adapt for transformers processing
Browse files- processing_minicpmv.py +2 -51
processing_minicpmv.py
CHANGED
@@ -53,62 +53,13 @@ class MiniCPMVProcessor(ProcessorMixin):
|
|
53 |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
54 |
images: ImageInput = None,
|
55 |
padding: Union[bool, str, PaddingStrategy] = False,
|
56 |
-
truncation: Union[bool, str, TruncationStrategy] = None,
|
57 |
max_length: Optional[int] = None,
|
58 |
do_pad: Optional[bool] = True,
|
59 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
60 |
) -> MiniCPMVBatchFeature:
|
61 |
-
"""
|
62 |
-
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
63 |
-
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
64 |
-
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
65 |
-
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
66 |
-
of the above two methods for more information.
|
67 |
-
|
68 |
-
Args:
|
69 |
-
text (`str`, `List[str]`, `List[List[str]]`):
|
70 |
-
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
71 |
-
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
72 |
-
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
73 |
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
74 |
-
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
75 |
-
tensor. Both channels-first and channels-last formats are supported.
|
76 |
-
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
77 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
78 |
-
index) among:
|
79 |
-
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
80 |
-
sequence if provided).
|
81 |
-
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
82 |
-
acceptable input length for the model if that argument is not provided.
|
83 |
-
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
84 |
-
lengths).
|
85 |
-
max_length (`int`, *optional*):
|
86 |
-
Maximum length of the returned list and optionally padding length (see above).
|
87 |
-
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
88 |
-
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
|
89 |
-
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
|
90 |
-
truncation (`bool`, *optional*):
|
91 |
-
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
92 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
93 |
-
If set, will return tensors of a particular framework. Acceptable values are:
|
94 |
-
|
95 |
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
96 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
97 |
-
- `'np'`: Return NumPy `np.ndarray` objects.
|
98 |
-
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
99 |
-
|
100 |
-
Returns:
|
101 |
-
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
102 |
-
|
103 |
-
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
104 |
-
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
105 |
-
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
106 |
-
`None`).
|
107 |
-
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
108 |
-
"""
|
109 |
if images is not None:
|
110 |
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
|
111 |
-
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
|
112 |
|
113 |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
114 |
def batch_decode(self, *args, **kwargs):
|
@@ -185,7 +136,7 @@ class MiniCPMVProcessor(ProcessorMixin):
|
|
185 |
"pixel_values": images,
|
186 |
"image_sizes": [image_sizes],
|
187 |
"image_bounds": [image_bounds]
|
188 |
-
})
|
189 |
|
190 |
@property
|
191 |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
|
|
53 |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
54 |
images: ImageInput = None,
|
55 |
padding: Union[bool, str, PaddingStrategy] = False,
|
|
|
56 |
max_length: Optional[int] = None,
|
57 |
do_pad: Optional[bool] = True,
|
58 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
59 |
) -> MiniCPMVBatchFeature:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
if images is not None:
|
61 |
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
|
62 |
+
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length, return_tensors=return_tensors)
|
63 |
|
64 |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
65 |
def batch_decode(self, *args, **kwargs):
|
|
|
136 |
"pixel_values": images,
|
137 |
"image_sizes": [image_sizes],
|
138 |
"image_bounds": [image_bounds]
|
139 |
+
}, tensor_type=return_tensors)
|
140 |
|
141 |
@property
|
142 |
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|