|
--- |
|
base_model: facebook/maskformer-resnet50-vistas |
|
library_name: transformers.js |
|
pipeline_tag: image-segmentation |
|
--- |
|
|
|
https://huggingface.co./facebook/maskformer-resnet50-vistas with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co./docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** Scene segmentation with `onnx-community/maskformer-resnet50-vistas`. |
|
|
|
```js |
|
import { pipeline } from '@huggingface/transformers'; |
|
|
|
// Create an image segmentation pipeline |
|
const segmenter = await pipeline('image-segmentation', 'onnx-community/maskformer-resnet50-vistas'); |
|
|
|
// Segment an image |
|
const url = 'https://huggingface.co./datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'; |
|
const output = await segmenter(url); |
|
console.log(output) |
|
// [ |
|
// { |
|
// score: 0.9999902844429016, |
|
// label: 'Sky', |
|
// mask: RawImage { ... } |
|
// }, |
|
// { |
|
// score: 0.9986440539360046, |
|
// label: 'Terrain', |
|
// mask: RawImage { ... } |
|
// }, |
|
// ... |
|
// } |
|
// ] |
|
``` |
|
|
|
You can visualize the outputs with: |
|
```js |
|
for (let i = 0; i < output.length; ++i) { |
|
const { mask, label } = output[i]; |
|
mask.save(`${label}-${i}.png`); |
|
} |
|
``` |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co./docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |