license: apache-2.0 | |
## Usage | |
### Python | |
```python | |
import os | |
import numpy as np | |
from onnxruntime import InferenceSession | |
# Tokens produced by phonemize() and tokenize() in kokoro.py | |
tokens = [50, 157, 43, 135, 16, 53, 135, 46, 16, 43, 102, 16, 56, 156, 57, 135, 6, 16, 102, 62, 61, 16, 70, 56, 16, 138, 56, 156, 72, 56, 61, 85, 123, 83, 44, 83, 54, 16, 53, 65, 156, 86, 61, 62, 131, 83, 56, 4, 16, 54, 156, 43, 102, 53, 16, 156, 72, 61, 53, 102, 112, 16, 70, 56, 16, 138, 56, 44, 156, 76, 158, 123, 56, 16, 62, 131, 156, 43, 102, 54, 46, 16, 102, 48, 16, 81, 47, 102, 54, 16, 54, 156, 51, 158, 46, 16, 70, 16, 92, 156, 135, 46, 16, 54, 156, 43, 102, 48, 4, 16, 81, 47, 102, 16, 50, 156, 72, 64, 83, 56, 62, 16, 156, 51, 158, 64, 83, 56, 16, 44, 157, 102, 56, 16, 44, 156, 76, 158, 123, 56, 4] | |
# Context length is 512, but leave room for the pad token 0 at the start & end | |
assert len(tokens) <= 510, len(tokens) | |
# Style vector based on len(tokens), ref_s has shape (1, 256) | |
voices = np.fromfile('./voices/af.bin', dtype=np.float32).reshape(-1, 1, 256) | |
ref_s = voices[len(tokens)] | |
# Add the pad ids, and reshape tokens, should now have shape (1, <=512) | |
tokens = [[0, *tokens, 0]] | |
model_name = 'model.onnx' # Options: model.onnx, model_fp16.onnx, model_quantized.onnx, model_q8f16.onnx, model_uint8.onnx, model_uint8f16.onnx, model_q4.onnx, model_q4f16.onnx | |
sess = InferenceSession(os.path.join('onnx', model_name)) | |
audio = sess.run(None, dict( | |
input_ids=tokens, | |
style=ref_s, | |
speed=np.ones(1, dtype=np.float32), | |
))[0] | |
``` | |
Optionally, save the audio to a file: | |
``` | |
import scipy.io.wavfile as wavfile | |
wavfile.write('audio.wav', 24000, audio[0]) | |
``` | |
## Samples | |
| Model | Size (MB) | Sample | | |
|------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------| | |
| model.onnx (fp32) | 326 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/njexBuqPzfYUvWgs9eQ-_.wav"></audio> | | |
| model_fp16.onnx (fp16) | 163 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8Ebl44hMQonZs4MlykExt.wav"></audio> | | |
| model_quantized.onnx (8-bit) | 92.4 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9SLOt6ETclZ4yRdlJ0VIj.wav"></audio> | | |
| model_q8f16.onnx (Mixed precision) | 86 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/gNDMqb33YEmYMbAIv_Grx.wav"></audio> | | |
| model_uint8.onnx (8-bit & mixed precision) | 177 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/tpOWRHIWwEb0PJX46dCWQ.wav"></audio> | | |
| model_uint8f16.onnx (Mixed precision) | 114 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/vtZhABzjP0pvGD7dRb5Vr.wav"></audio> | | |
| model_q4.onnx (4-bit matmul) | 305 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8FVn0IJIUfccEBWq8Fnw_.wav"></audio> | | |
| model_q4f16.onnx (4-bit matmul & fp16 weights) | 154 | <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/7DrgWC_1q00s-wUJuG44X.wav"></audio> | | |