Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1823
  • Accuracy: 0.6499

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1635 1.0 924 1.1860 0.5948
1.0619 2.0 1848 1.0310 0.6455
0.646 3.0 2772 1.0620 0.6509
0.3294 4.0 3696 1.2169 0.6599
0.2648 5.0 4620 1.4374 0.6455
0.1957 6.0 5544 1.7164 0.6420
0.131 7.0 6468 2.0272 0.6488
0.0817 8.0 7392 2.2750 0.6447
0.0483 9.0 8316 2.4384 0.6431
0.0451 10.0 9240 2.6186 0.6447
0.0224 11.0 10164 2.7368 0.6463
0.0134 12.0 11088 2.9439 0.6477
0.0023 13.0 12012 2.9691 0.6520
0.0074 14.0 12936 3.0721 0.6450
0.0231 15.0 13860 3.1373 0.6499
0.0004 16.0 14784 3.2089 0.6474
0.0062 17.0 15708 3.1483 0.6493
0.0132 18.0 16632 3.1830 0.6515
0.0034 19.0 17556 3.1843 0.6474
0.0796 20.0 18480 3.1823 0.6499

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onizukal/Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5

Finetuned
(61)
this model

Evaluation results