|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: videomae-large-cctv-brawl_extended_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-large-cctv-brawl_extended_v2 |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-large](https://huggingface.co./MCG-NJU/videomae-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7025 |
|
- Accuracy: 0.8993 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-07 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 37695 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.4212 | 0.07 | 2514 | 0.4737 | 0.7236 | |
|
| 0.2813 | 1.07 | 5028 | 0.3922 | 0.8350 | |
|
| 0.1918 | 2.07 | 7542 | 0.5665 | 0.8734 | |
|
| 0.2002 | 3.07 | 10056 | 0.6058 | 0.8808 | |
|
| 0.1921 | 4.07 | 12570 | 0.6136 | 0.8867 | |
|
| 0.1713 | 5.07 | 15084 | 0.6446 | 0.8914 | |
|
| 0.006 | 6.07 | 17598 | 0.6783 | 0.8918 | |
|
| 0.004 | 7.07 | 20112 | 0.7586 | 0.8863 | |
|
| 0.201 | 8.07 | 22626 | 0.7732 | 0.8906 | |
|
| 0.0237 | 9.07 | 25140 | 0.7025 | 0.8993 | |
|
| 0.0003 | 10.07 | 27654 | 0.7510 | 0.8957 | |
|
| 0.1943 | 11.07 | 30168 | 0.7849 | 0.8989 | |
|
| 0.0001 | 12.07 | 32682 | 0.8075 | 0.8981 | |
|
| 0.0 | 13.07 | 35196 | 0.8347 | 0.8961 | |
|
| 0.0001 | 14.07 | 37695 | 0.8329 | 0.8985 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|