Update README.md

#1
by yonigozlan HF staff - opened
Files changed (1) hide show
  1. README.md +121 -196
README.md CHANGED
@@ -1,199 +1,124 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ pipeline_tag: zero-shot-object-detection
4
  ---
5
 
6
+ # OmDet model
7
+
8
+ The OmDet model was proposed in [Real-time Transformer-based Open-Vocabulary Detection with Efficient Fusion Head](https://arxiv.org/abs/2403.06892) by Tiancheng Zhao, Peng Liu, Xuan He, Lu Zhang, Kyusong Lee.
9
+
10
+ # Intended use cases
11
+
12
+ This model is intended for zero-shot (also called open-vocabulary) object detection.
13
+
14
+ # Usage
15
+
16
+ ## Single image inference
17
+
18
+ Here's how to load the model and prepare the inputs to perform zero-shot object detection on a single image:
19
+
20
+ ```python
21
+ import requests
22
+ from PIL import Image
23
+
24
+ from transformers import AutoProcessor, OmDetTurboForObjectDetection
25
+
26
+ processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-tiny")
27
+ model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-tiny")
28
+
29
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
30
+ image = Image.open(requests.get(url, stream=True).raw)
31
+ classes = ["cat", "remote"]
32
+ inputs = processor(image, text=classes, return_tensors="pt")
33
+
34
+ outputs = model(**inputs)
35
+
36
+ # convert outputs (bounding boxes and class logits)
37
+ results = processor.post_process_grounded_object_detection(
38
+ outputs,
39
+ classes=classes,
40
+ target_sizes=[image.size[::-1]],
41
+ score_threshold=0.3,
42
+ nms_threshold=0.3,
43
+ )[0]
44
+ for score, class_name, box in zip(
45
+ results["scores"], results["classes"], results["boxes"]
46
+ ):
47
+ box = [round(i, 1) for i in box.tolist()]
48
+ print(
49
+ f"Detected {class_name} with confidence "
50
+ f"{round(score.item(), 2)} at location {box}"
51
+ )
52
+ ```
53
+
54
+ ## Batched images inference
55
+
56
+ OmDet-Turbo can perform batched multi-image inference, with support for different text prompts and classes in the same batch:
57
+
58
+ ```python
59
+ >>> import torch
60
+ >>> import requests
61
+ >>> from io import BytesIO
62
+ >>> from PIL import Image
63
+ >>> from transformers import AutoProcessor, OmDetTurboForObjectDetection
64
+
65
+ >>> processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
66
+ >>> model = OmDetTurboForObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
67
+
68
+ >>> url1 = "http://images.cocodataset.org/val2017/000000039769.jpg"
69
+ >>> image1 = Image.open(BytesIO(requests.get(url1).content)).convert("RGB")
70
+ >>> classes1 = ["cat", "remote"]
71
+ >>> task1 = "Detect {}.".format(", ".join(classes1))
72
+
73
+ >>> url2 = "http://images.cocodataset.org/train2017/000000257813.jpg"
74
+ >>> image2 = Image.open(BytesIO(requests.get(url2).content)).convert("RGB")
75
+ >>> classes2 = ["boat"]
76
+ >>> task2 = "Detect everything that looks like a boat."
77
+
78
+ >>> url3 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
79
+ >>> image3 = Image.open(BytesIO(requests.get(url3).content)).convert("RGB")
80
+ >>> classes3 = ["statue", "trees"]
81
+ >>> task3 = "Focus on the foreground, detect statue and trees."
82
+
83
+ >>> inputs = processor(
84
+ ... images=[image1, image2, image3],
85
+ ... text=[classes1, classes2, classes3],
86
+ ... task=[task1, task2, task3],
87
+ ... return_tensors="pt",
88
+ ... )
89
+
90
+ >>> with torch.no_grad():
91
+ ... outputs = model(**inputs)
92
+
93
+ >>> # convert outputs (bounding boxes and class logits)
94
+ >>> results = processor.post_process_grounded_object_detection(
95
+ ... outputs,
96
+ ... classes=[classes1, classes2, classes3],
97
+ ... target_sizes=[image1.size[::-1], image2.size[::-1], image3.size[::-1]],
98
+ ... score_threshold=0.2,
99
+ ... nms_threshold=0.3,
100
+ ... )
101
+
102
+ >>> for i, result in enumerate(results):
103
+ ... for score, class_name, box in zip(
104
+ ... result["scores"], result["classes"], result["boxes"]
105
+ ... ):
106
+ ... box = [round(i, 1) for i in box.tolist()]
107
+ ... print(
108
+ ... f"Detected {class_name} with confidence "
109
+ ... f"{round(score.item(), 2)} at location {box} in image {i}"
110
+ ... )
111
+ Detected remote with confidence 0.77 at location [39.9, 70.4, 176.7, 118.0] in image 0
112
+ Detected cat with confidence 0.72 at location [11.6, 54.2, 314.8, 474.0] in image 0
113
+ Detected remote with confidence 0.56 at location [333.4, 75.8, 370.7, 187.0] in image 0
114
+ Detected cat with confidence 0.55 at location [345.2, 24.0, 639.8, 371.7] in image 0
115
+ Detected boat with confidence 0.32 at location [146.9, 219.8, 209.6, 250.7] in image 1
116
+ Detected boat with confidence 0.3 at location [319.1, 223.2, 403.2, 238.4] in image 1
117
+ Detected boat with confidence 0.27 at location [37.7, 220.3, 84.0, 235.9] in image 1
118
+ Detected boat with confidence 0.22 at location [407.9, 207.0, 441.7, 220.2] in image 1
119
+ Detected statue with confidence 0.73 at location [544.7, 210.2, 651.9, 502.8] in image 2
120
+ Detected trees with confidence 0.25 at location [3.9, 584.3, 391.4, 785.6] in image 2
121
+ Detected trees with confidence 0.25 at location [1.4, 621.2, 118.2, 787.8] in image 2
122
+ Detected statue with confidence 0.2 at location [428.1, 205.5, 767.3, 759.5] in image 2
123
+
124
+ ```