omermazig's picture
update model card README.md
031a73d
metadata
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base-finetuned-kinetics
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: >-
      videomae-base-finetuned-kinetics-finetuned-nba-binary-data-2-batch-50-epochs-new-database
    results: []

videomae-base-finetuned-kinetics-finetuned-nba-binary-data-2-batch-50-epochs-new-database

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1744
  • Accuracy: 0.965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6618 0.02 200 0.6293 0.6875
0.5781 1.02 400 1.4660 0.6042
0.8554 2.02 600 0.8740 0.6667
0.4445 3.02 800 1.0660 0.6667
0.3265 4.02 1000 0.6635 0.7708
0.5417 5.02 1200 0.4705 0.8542
0.5912 6.02 1400 1.0082 0.7708
0.5918 7.02 1600 2.6292 0.5625
0.8992 8.02 1800 0.8514 0.7708
0.172 9.02 2000 0.4568 0.875
0.493 10.02 2200 0.7354 0.7917
0.3622 11.02 2400 1.0386 0.7708
0.4966 12.02 2600 0.8979 0.7917
0.3541 13.02 2800 0.8220 0.7708
0.5386 14.02 3000 1.0256 0.7708
0.4615 15.02 3200 1.0447 0.7917
0.1624 16.02 3400 0.6448 0.8542
1.0388 17.02 3600 0.9992 0.7708
0.0442 18.02 3800 1.1626 0.7708
0.2449 19.02 4000 0.8174 0.8542
0.3024 20.02 4200 0.8500 0.7917
0.4879 21.02 4400 1.2219 0.7292
0.4035 22.02 4600 0.6436 0.8333
0.0334 23.02 4800 0.7433 0.8333
0.4849 24.02 5000 0.9911 0.8125
0.6075 25.02 5200 1.2249 0.7083
0.3441 26.02 5400 0.8563 0.8333
0.5653 27.02 5600 0.4557 0.8958
0.196 28.02 5800 0.4156 0.8542
0.0038 29.02 6000 0.4562 0.8542
0.2696 30.02 6200 0.8153 0.7917
0.0015 31.02 6400 0.5923 0.8958
0.0036 32.02 6600 0.7343 0.875
0.3623 33.02 6800 0.3089 0.9375
0.2142 34.02 7000 0.6142 0.8958
0.0008 35.02 7200 0.6010 0.875
0.0005 36.02 7400 0.6238 0.875
0.0002 37.02 7600 0.5966 0.875
0.5 38.02 7800 0.6371 0.8542
0.0004 39.02 8000 0.8515 0.8542
0.0001 40.02 8200 0.5120 0.875
0.0069 41.02 8400 0.8686 0.8542
0.0002 42.02 8600 0.8801 0.8542
0.0001 43.02 8800 0.8996 0.8542
0.0067 44.02 9000 0.7670 0.8542
0.0001 45.02 9200 0.9936 0.8333
0.0638 46.02 9400 0.6616 0.875
0.0001 47.02 9600 0.7978 0.8542
0.0001 48.02 9800 0.6737 0.8542
0.0001 49.02 10000 0.5887 0.875

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3