🚀 Arabic-Retrieval-v1.0
This is a high-performance Arabic information retrieval built using the robust sentence-transformers framework, it delivers state-of-the-art performance and is tailored to the richness and complexity of the Arabic language.
🔑 Key Features
- 🔥 Outstanding Performance: Matches the accuracy of top-tier multilingual models like
e5-multilingual-large
. See evaluation - 💡 Arabic-Focused: Designed specifically for the nuances and dialects of Arabic, ensuring more accurate and context-aware results.
- 📉 Lightweight Efficiency: Requires 25%-50% less memory, making it ideal for environments with limited resources or edge deployments.
🌍 Why This Model?
Multilingual models are powerful, but they’re often bulky and not optimized for specific languages. This model bridges that gap, offering Arabic-native capabilities without sacrificing performance or efficiency. Whether you’re working on search engines, chatbots, or large-scale NLP pipelines, this model provides a fast, accurate, and resource-efficient solution.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference. It is important to add the prefixes <query>: and <passage>: to your queries and passages while retrieving in the folllowing way:
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("omarelshehy/Arabic-Retrieval-v1.0")
# Query
query = "<query>: كيف يمكن للذكاء الاصطناعي تحسين طرق التدريس التقليدية؟"
# Passages
passages = [
"<passage>: طرق التدريس التقليدية تستفيد من الذكاء الاصطناعي عبر تحسين عملية المتابعة وتخصيص التجربة التعليمية. يقوم الذكاء الاصطناعي بتحليل بيانات الطلاب وتقديم توصيات فعالة للمعلمين حول طرق التدريس الأفضل.",
"<passage>: تطوير التعليم الشخصي يعتمد بشكل كبير على الذكاء الاصطناعي، الذي يقوم بمتابعة تقدم الطلاب بشكل فردي. يقدم الذكاء الاصطناعي حلولاً تعليمية مخصصة لكل طالب بناءً على مستواه وأدائه.",
"<passage>: الدقة في تقييم الطلاب تتزايد بفضل الذكاء الاصطناعي الذي يقارن النتائج مع معايير متقدمة. بالرغم من التحديات التقليدية، الذكاء الاصطناعي يوفر أدوات تحليل تتيح تقييماً أدق لأداء الطلاب."
]
# Encode query and passages
embeddings_query = model.encode(queries)
embeddings_passages = model.encode(passages)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings_query, embeddings_passages)
# Get best matching passage to query
best_match = passages[similarities.argmax().item()]
print(f"Best matching passage is {best_match}")
Evaluation
This model has been ealuated using 3 different datasets and the NDCG@10 metric
- Dataset 1: castorini/mr-tydi
- Dataset 2: Omartificial-Intelligence-Space/Arabic-finanical-rag-embedding-dataset
- Dataset 3: sadeem-ai/sadeem-ar-eval-retrieval-questions and is compared to other highly performant models:
model | 1 | 2 | 3 |
---|---|---|---|
Arabic-Retrieval-v1.0 | 0.875 | 0.72 | 0.679 |
intfloat/multilingual-e5-large | 0.89 | 0.719 | 0.698 |
intfloat/multilingual-e5-base | 0.87 | 0.69 | 0.686 |
Citation
BibTeX
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 169
Model tree for omarelshehy/Arabic-Retrieval-v1.0
Base model
aubmindlab/bert-base-arabertv02Collection including omarelshehy/Arabic-Retrieval-v1.0
Evaluation results
- main_score on MTEB MIRACLRetrieval (ar)self-reported58.664
- map_at_1 on MTEB MIRACLRetrieval (ar)self-reported32.399
- map_at_10 on MTEB MIRACLRetrieval (ar)self-reported50.236
- map_at_100 on MTEB MIRACLRetrieval (ar)self-reported51.872
- map_at_1000 on MTEB MIRACLRetrieval (ar)self-reported51.926
- ndcg_at_1 on MTEB MIRACLRetrieval (ar)self-reported48.377
- ndcg_at_10 on MTEB MIRACLRetrieval (ar)self-reported58.664
- ndcg_at_100 on MTEB MIRACLRetrieval (ar)self-reported63.755
- ndcg_at_1000 on MTEB MIRACLRetrieval (ar)self-reported64.672
- ndcg_at_20 on MTEB MIRACLRetrieval (ar)self-reported61.111