t5-base-qa-ner-conll
Unofficial implementation of InstructionNER. t5-base model tuned on conll2003 dataset.
https://github.com/ovbystrova/InstructionNER
Inference
git clone https://github.com/ovbystrova/InstructionNER
cd InstructionNER
from instruction_ner.model import Model
model = Model(
model_path_or_name="olgaduchovny/t5-base-ner-mit-restaurant",
tokenizer_path_or_name="olgaduchovny/t5-base-mit-restaurant"
)
options = ["LOC", "PER", "ORG", "MISC"]
instruction = "please extract entities and their types from the input sentence, " \
"all entity types are in options"
text = "Once I visited Sovok in Nizny Novgorod. I had asian wok there. It was the best WOK i ever had"\
"It was cheap but lemonades cost 5 dollars."
generation_kwargs = {
"num_beams": 2,
"max_length": 128
}
pred_spans = model.predict(
text=text,
generation_kwargs=generation_kwargs,
instruction=instruction,
options=options
)
>>> ('sovok is a Restaurant_Name, Nizny Novgorod is a Location, asian wok is a Dish, cheap is a Price, lemonades is a Dish, 5 dollars is a Price.',
[(24, 38, 'Location'),
(46, 55, 'Dish'),
(100, 105, 'Price'),
(110, 119, 'Dish'),
(125, 134, 'Price')])
- Downloads last month
- 3
Inference API (serverless) has been turned off for this model.