whisper-small-id / README.md
octava's picture
End of training
08087cd verified
metadata
library_name: transformers
language:
  - id
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - octava/extracted-id-subbed-video-v2
metrics:
  - wer
model-index:
  - name: Whisper Small Id - Inspirasi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Extracted id video v2
          type: octava/extracted-id-subbed-video-v2
          config: id
          split: test
          args: 'config: id, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 28.173403414112286

Whisper Small Id - Inspirasi

This model is a fine-tuned version of openai/whisper-small on the Extracted id video v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4480
  • Wer: 28.1734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2601 0.5615 1000 0.3923 29.8060
0.1176 1.1230 2000 0.3954 30.3875
0.0848 1.6844 3000 0.4068 29.2758
0.0317 2.2459 4000 0.4088 26.8850
0.0261 2.8074 5000 0.4480 28.1734

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 3.3.2
  • Tokenizers 0.21.0