math_question_grade_detection_v12-16-24_v1
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6301
- Accuracy: 0.8194
- Precision: 0.8228
- Recall: 0.8194
- F1: 0.8200
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 6000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.0683 | 50 | 2.1123 | 0.1676 | 0.1211 | 0.1676 | 0.1026 |
No log | 0.1366 | 100 | 2.0118 | 0.2613 | 0.2102 | 0.2613 | 0.1941 |
No log | 0.2049 | 150 | 1.8750 | 0.3075 | 0.3556 | 0.3075 | 0.2833 |
No log | 0.2732 | 200 | 1.7074 | 0.3689 | 0.4076 | 0.3689 | 0.3224 |
No log | 0.3415 | 250 | 1.5071 | 0.4612 | 0.4925 | 0.4612 | 0.4492 |
No log | 0.4098 | 300 | 1.4983 | 0.4120 | 0.5160 | 0.4120 | 0.3779 |
No log | 0.4781 | 350 | 1.2997 | 0.5196 | 0.5526 | 0.5196 | 0.5059 |
No log | 0.5464 | 400 | 1.1756 | 0.5849 | 0.6063 | 0.5849 | 0.5731 |
No log | 0.6148 | 450 | 1.1104 | 0.6088 | 0.6260 | 0.6088 | 0.5997 |
1.654 | 0.6831 | 500 | 1.0897 | 0.6103 | 0.6149 | 0.6103 | 0.6053 |
1.654 | 0.7514 | 550 | 1.0162 | 0.6126 | 0.6221 | 0.6126 | 0.5963 |
1.654 | 0.8197 | 600 | 1.0077 | 0.6095 | 0.6405 | 0.6095 | 0.5904 |
1.654 | 0.8880 | 650 | 0.9427 | 0.6403 | 0.6608 | 0.6403 | 0.6277 |
1.654 | 0.9563 | 700 | 0.9067 | 0.6464 | 0.6576 | 0.6464 | 0.6352 |
1.654 | 1.0246 | 750 | 0.8812 | 0.6618 | 0.6745 | 0.6618 | 0.6443 |
1.654 | 1.0929 | 800 | 0.8706 | 0.6764 | 0.6824 | 0.6764 | 0.6729 |
1.654 | 1.1612 | 850 | 0.8650 | 0.6626 | 0.6800 | 0.6626 | 0.6584 |
1.654 | 1.2295 | 900 | 0.8226 | 0.6879 | 0.7069 | 0.6879 | 0.6792 |
1.654 | 1.2978 | 950 | 0.8039 | 0.7041 | 0.7102 | 0.7041 | 0.6999 |
0.9362 | 1.3661 | 1000 | 0.7681 | 0.7110 | 0.7194 | 0.7110 | 0.7057 |
0.9362 | 1.4344 | 1050 | 0.7844 | 0.6941 | 0.7128 | 0.6941 | 0.6916 |
0.9362 | 1.5027 | 1100 | 0.7334 | 0.7241 | 0.7274 | 0.7241 | 0.7219 |
0.9362 | 1.5710 | 1150 | 0.7071 | 0.7348 | 0.7371 | 0.7348 | 0.7313 |
0.9362 | 1.6393 | 1200 | 0.6984 | 0.7487 | 0.7544 | 0.7487 | 0.7486 |
0.9362 | 1.7077 | 1250 | 0.7166 | 0.7310 | 0.7375 | 0.7310 | 0.7317 |
0.9362 | 1.7760 | 1300 | 0.7009 | 0.7425 | 0.7476 | 0.7425 | 0.7386 |
0.9362 | 1.8443 | 1350 | 0.6653 | 0.7533 | 0.7584 | 0.7533 | 0.7521 |
0.9362 | 1.9126 | 1400 | 0.6670 | 0.7533 | 0.7666 | 0.7533 | 0.7539 |
0.9362 | 1.9809 | 1450 | 0.6622 | 0.7410 | 0.7482 | 0.7410 | 0.7414 |
0.7205 | 2.0492 | 1500 | 0.6442 | 0.7479 | 0.7521 | 0.7479 | 0.7420 |
0.7205 | 2.1175 | 1550 | 0.6465 | 0.7563 | 0.7637 | 0.7563 | 0.7567 |
0.7205 | 2.1858 | 1600 | 0.6719 | 0.7456 | 0.7684 | 0.7456 | 0.7437 |
0.7205 | 2.2541 | 1650 | 0.6189 | 0.7694 | 0.7831 | 0.7694 | 0.7721 |
0.7205 | 2.3224 | 1700 | 0.6196 | 0.7663 | 0.7726 | 0.7663 | 0.7647 |
0.7205 | 2.3907 | 1750 | 0.6442 | 0.7610 | 0.7612 | 0.7610 | 0.7592 |
0.7205 | 2.4590 | 1800 | 0.6156 | 0.7733 | 0.7765 | 0.7733 | 0.7736 |
0.7205 | 2.5273 | 1850 | 0.6003 | 0.7756 | 0.7813 | 0.7756 | 0.7766 |
0.7205 | 2.5956 | 1900 | 0.5974 | 0.7748 | 0.7781 | 0.7748 | 0.7756 |
0.7205 | 2.6639 | 1950 | 0.6170 | 0.7633 | 0.7697 | 0.7633 | 0.7609 |
0.5272 | 2.7322 | 2000 | 0.5920 | 0.7748 | 0.7774 | 0.7748 | 0.7751 |
0.5272 | 2.8005 | 2050 | 0.6260 | 0.7594 | 0.7754 | 0.7594 | 0.7602 |
0.5272 | 2.8689 | 2100 | 0.5824 | 0.7932 | 0.8011 | 0.7932 | 0.7929 |
0.5272 | 2.9372 | 2150 | 0.5796 | 0.7879 | 0.7888 | 0.7879 | 0.7861 |
0.5272 | 3.0055 | 2200 | 0.5765 | 0.7932 | 0.7959 | 0.7932 | 0.7923 |
0.5272 | 3.0738 | 2250 | 0.5710 | 0.7940 | 0.8033 | 0.7940 | 0.7956 |
0.5272 | 3.1421 | 2300 | 0.5902 | 0.7825 | 0.7881 | 0.7825 | 0.7822 |
0.5272 | 3.2104 | 2350 | 0.5540 | 0.7978 | 0.8007 | 0.7978 | 0.7982 |
0.5272 | 3.2787 | 2400 | 0.5843 | 0.7863 | 0.7963 | 0.7863 | 0.7869 |
0.5272 | 3.3470 | 2450 | 0.5719 | 0.8002 | 0.8071 | 0.8002 | 0.8004 |
0.4067 | 3.4153 | 2500 | 0.5610 | 0.8048 | 0.8115 | 0.8048 | 0.8063 |
0.4067 | 3.4836 | 2550 | 0.5584 | 0.8009 | 0.8068 | 0.8009 | 0.8023 |
0.4067 | 3.5519 | 2600 | 0.5661 | 0.7971 | 0.8023 | 0.7971 | 0.7983 |
0.4067 | 3.6202 | 2650 | 0.5789 | 0.7978 | 0.7996 | 0.7978 | 0.7970 |
0.4067 | 3.6885 | 2700 | 0.6037 | 0.7848 | 0.7934 | 0.7848 | 0.7856 |
0.4067 | 3.7568 | 2750 | 0.5666 | 0.8009 | 0.8084 | 0.8009 | 0.8024 |
0.4067 | 3.8251 | 2800 | 0.5925 | 0.7925 | 0.8055 | 0.7925 | 0.7932 |
0.4067 | 3.8934 | 2850 | 0.5872 | 0.8055 | 0.8124 | 0.8055 | 0.8073 |
0.4067 | 3.9617 | 2900 | 0.5637 | 0.8040 | 0.8056 | 0.8040 | 0.8033 |
0.4067 | 4.0301 | 2950 | 0.5385 | 0.8101 | 0.8129 | 0.8101 | 0.8100 |
0.3331 | 4.0984 | 3000 | 0.5727 | 0.7955 | 0.8020 | 0.7955 | 0.7972 |
0.3331 | 4.1667 | 3050 | 0.5755 | 0.7963 | 0.8021 | 0.7963 | 0.7962 |
0.3331 | 4.2350 | 3100 | 0.5668 | 0.8048 | 0.8097 | 0.8048 | 0.8058 |
0.3331 | 4.3033 | 3150 | 0.5994 | 0.7986 | 0.8083 | 0.7986 | 0.7999 |
0.3331 | 4.3716 | 3200 | 0.5886 | 0.7986 | 0.8054 | 0.7986 | 0.7996 |
0.3331 | 4.4399 | 3250 | 0.5933 | 0.7986 | 0.8091 | 0.7986 | 0.8006 |
0.3331 | 4.5082 | 3300 | 0.6012 | 0.8002 | 0.8086 | 0.8002 | 0.8017 |
0.3331 | 4.5765 | 3350 | 0.5947 | 0.8040 | 0.8073 | 0.8040 | 0.8031 |
0.3331 | 4.6448 | 3400 | 0.5596 | 0.8125 | 0.8132 | 0.8125 | 0.8121 |
0.3331 | 4.7131 | 3450 | 0.5737 | 0.8048 | 0.8082 | 0.8048 | 0.8054 |
0.2431 | 4.7814 | 3500 | 0.5822 | 0.8101 | 0.8155 | 0.8101 | 0.8110 |
0.2431 | 4.8497 | 3550 | 0.5520 | 0.8155 | 0.8177 | 0.8155 | 0.8157 |
0.2431 | 4.9180 | 3600 | 0.5730 | 0.8125 | 0.8157 | 0.8125 | 0.8127 |
0.2431 | 4.9863 | 3650 | 0.5790 | 0.8055 | 0.8147 | 0.8055 | 0.8069 |
0.2431 | 5.0546 | 3700 | 0.5803 | 0.8109 | 0.8139 | 0.8109 | 0.8116 |
0.2431 | 5.1230 | 3750 | 0.5903 | 0.8132 | 0.8152 | 0.8132 | 0.8130 |
0.2431 | 5.1913 | 3800 | 0.5632 | 0.8240 | 0.8261 | 0.8240 | 0.8245 |
0.2431 | 5.2596 | 3850 | 0.6303 | 0.8017 | 0.8077 | 0.8017 | 0.8031 |
0.2431 | 5.3279 | 3900 | 0.5857 | 0.8148 | 0.8198 | 0.8148 | 0.8158 |
0.2431 | 5.3962 | 3950 | 0.5705 | 0.8171 | 0.8195 | 0.8171 | 0.8176 |
0.1805 | 5.4645 | 4000 | 0.5788 | 0.8201 | 0.8204 | 0.8201 | 0.8200 |
0.1805 | 5.5328 | 4050 | 0.5936 | 0.8101 | 0.8149 | 0.8101 | 0.8104 |
0.1805 | 5.6011 | 4100 | 0.5875 | 0.8163 | 0.8195 | 0.8163 | 0.8166 |
0.1805 | 5.6694 | 4150 | 0.6021 | 0.8171 | 0.8224 | 0.8171 | 0.8182 |
0.1805 | 5.7377 | 4200 | 0.5693 | 0.8186 | 0.8216 | 0.8186 | 0.8192 |
0.1805 | 5.8060 | 4250 | 0.5950 | 0.8155 | 0.8177 | 0.8155 | 0.8157 |
0.1805 | 5.8743 | 4300 | 0.6180 | 0.8086 | 0.8143 | 0.8086 | 0.8091 |
0.1805 | 5.9426 | 4350 | 0.5957 | 0.8155 | 0.8197 | 0.8155 | 0.8162 |
0.1805 | 6.0109 | 4400 | 0.6080 | 0.8140 | 0.8179 | 0.8140 | 0.8142 |
0.1805 | 6.0792 | 4450 | 0.5948 | 0.8178 | 0.8197 | 0.8178 | 0.8183 |
0.1547 | 6.1475 | 4500 | 0.5838 | 0.8217 | 0.8228 | 0.8217 | 0.8219 |
0.1547 | 6.2158 | 4550 | 0.6166 | 0.8148 | 0.8178 | 0.8148 | 0.8148 |
0.1547 | 6.2842 | 4600 | 0.6036 | 0.8224 | 0.8264 | 0.8224 | 0.8230 |
0.1547 | 6.3525 | 4650 | 0.6064 | 0.8232 | 0.8265 | 0.8232 | 0.8229 |
0.1547 | 6.4208 | 4700 | 0.6158 | 0.8171 | 0.8206 | 0.8171 | 0.8177 |
0.1547 | 6.4891 | 4750 | 0.6404 | 0.8140 | 0.8185 | 0.8140 | 0.8142 |
0.1547 | 6.5574 | 4800 | 0.6165 | 0.8171 | 0.8211 | 0.8171 | 0.8179 |
0.1547 | 6.6257 | 4850 | 0.6126 | 0.8186 | 0.8237 | 0.8186 | 0.8193 |
0.1547 | 6.6940 | 4900 | 0.5903 | 0.8240 | 0.8251 | 0.8240 | 0.8242 |
0.1547 | 6.7623 | 4950 | 0.6012 | 0.8155 | 0.8203 | 0.8155 | 0.8165 |
0.1099 | 6.8306 | 5000 | 0.6131 | 0.8186 | 0.8208 | 0.8186 | 0.8191 |
0.1099 | 6.8989 | 5050 | 0.5935 | 0.8248 | 0.8262 | 0.8248 | 0.8252 |
0.1099 | 6.9672 | 5100 | 0.6264 | 0.8186 | 0.8216 | 0.8186 | 0.8189 |
0.1099 | 7.0355 | 5150 | 0.6274 | 0.8186 | 0.8225 | 0.8186 | 0.8192 |
0.1099 | 7.1038 | 5200 | 0.6375 | 0.8217 | 0.8233 | 0.8217 | 0.8218 |
0.1099 | 7.1721 | 5250 | 0.6362 | 0.8148 | 0.8185 | 0.8148 | 0.8154 |
0.1099 | 7.2404 | 5300 | 0.6180 | 0.8194 | 0.8220 | 0.8194 | 0.8199 |
0.1099 | 7.3087 | 5350 | 0.6279 | 0.8201 | 0.8252 | 0.8201 | 0.8211 |
0.1099 | 7.3770 | 5400 | 0.6052 | 0.8217 | 0.8234 | 0.8217 | 0.8219 |
0.1099 | 7.4454 | 5450 | 0.6075 | 0.8217 | 0.8228 | 0.8217 | 0.8219 |
0.0859 | 7.5137 | 5500 | 0.6354 | 0.8178 | 0.8220 | 0.8178 | 0.8183 |
0.0859 | 7.5820 | 5550 | 0.6367 | 0.8163 | 0.8205 | 0.8163 | 0.8170 |
0.0859 | 7.6503 | 5600 | 0.6088 | 0.8240 | 0.8254 | 0.8240 | 0.8242 |
0.0859 | 7.7186 | 5650 | 0.6100 | 0.8240 | 0.8269 | 0.8240 | 0.8245 |
0.0859 | 7.7869 | 5700 | 0.6208 | 0.8232 | 0.8258 | 0.8232 | 0.8239 |
0.0859 | 7.8552 | 5750 | 0.6302 | 0.8278 | 0.8301 | 0.8278 | 0.8283 |
0.0859 | 7.9235 | 5800 | 0.6295 | 0.8240 | 0.8268 | 0.8240 | 0.8246 |
0.0859 | 7.9918 | 5850 | 0.6438 | 0.8240 | 0.8284 | 0.8240 | 0.8247 |
0.0859 | 8.0601 | 5900 | 0.6334 | 0.8217 | 0.8257 | 0.8217 | 0.8224 |
0.0859 | 8.1284 | 5950 | 0.6313 | 0.8201 | 0.8237 | 0.8201 | 0.8208 |
0.0733 | 8.1967 | 6000 | 0.6301 | 0.8194 | 0.8228 | 0.8194 | 0.8200 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nzm97/math_question_grade_detection_v12-16-24_v1
Base model
allenai/scibert_scivocab_uncased