math_question_grade_detection_v12-16-24_v1

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6301
  • Accuracy: 0.8194
  • Precision: 0.8228
  • Recall: 0.8194
  • F1: 0.8200

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 6000

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.0683 50 2.1123 0.1676 0.1211 0.1676 0.1026
No log 0.1366 100 2.0118 0.2613 0.2102 0.2613 0.1941
No log 0.2049 150 1.8750 0.3075 0.3556 0.3075 0.2833
No log 0.2732 200 1.7074 0.3689 0.4076 0.3689 0.3224
No log 0.3415 250 1.5071 0.4612 0.4925 0.4612 0.4492
No log 0.4098 300 1.4983 0.4120 0.5160 0.4120 0.3779
No log 0.4781 350 1.2997 0.5196 0.5526 0.5196 0.5059
No log 0.5464 400 1.1756 0.5849 0.6063 0.5849 0.5731
No log 0.6148 450 1.1104 0.6088 0.6260 0.6088 0.5997
1.654 0.6831 500 1.0897 0.6103 0.6149 0.6103 0.6053
1.654 0.7514 550 1.0162 0.6126 0.6221 0.6126 0.5963
1.654 0.8197 600 1.0077 0.6095 0.6405 0.6095 0.5904
1.654 0.8880 650 0.9427 0.6403 0.6608 0.6403 0.6277
1.654 0.9563 700 0.9067 0.6464 0.6576 0.6464 0.6352
1.654 1.0246 750 0.8812 0.6618 0.6745 0.6618 0.6443
1.654 1.0929 800 0.8706 0.6764 0.6824 0.6764 0.6729
1.654 1.1612 850 0.8650 0.6626 0.6800 0.6626 0.6584
1.654 1.2295 900 0.8226 0.6879 0.7069 0.6879 0.6792
1.654 1.2978 950 0.8039 0.7041 0.7102 0.7041 0.6999
0.9362 1.3661 1000 0.7681 0.7110 0.7194 0.7110 0.7057
0.9362 1.4344 1050 0.7844 0.6941 0.7128 0.6941 0.6916
0.9362 1.5027 1100 0.7334 0.7241 0.7274 0.7241 0.7219
0.9362 1.5710 1150 0.7071 0.7348 0.7371 0.7348 0.7313
0.9362 1.6393 1200 0.6984 0.7487 0.7544 0.7487 0.7486
0.9362 1.7077 1250 0.7166 0.7310 0.7375 0.7310 0.7317
0.9362 1.7760 1300 0.7009 0.7425 0.7476 0.7425 0.7386
0.9362 1.8443 1350 0.6653 0.7533 0.7584 0.7533 0.7521
0.9362 1.9126 1400 0.6670 0.7533 0.7666 0.7533 0.7539
0.9362 1.9809 1450 0.6622 0.7410 0.7482 0.7410 0.7414
0.7205 2.0492 1500 0.6442 0.7479 0.7521 0.7479 0.7420
0.7205 2.1175 1550 0.6465 0.7563 0.7637 0.7563 0.7567
0.7205 2.1858 1600 0.6719 0.7456 0.7684 0.7456 0.7437
0.7205 2.2541 1650 0.6189 0.7694 0.7831 0.7694 0.7721
0.7205 2.3224 1700 0.6196 0.7663 0.7726 0.7663 0.7647
0.7205 2.3907 1750 0.6442 0.7610 0.7612 0.7610 0.7592
0.7205 2.4590 1800 0.6156 0.7733 0.7765 0.7733 0.7736
0.7205 2.5273 1850 0.6003 0.7756 0.7813 0.7756 0.7766
0.7205 2.5956 1900 0.5974 0.7748 0.7781 0.7748 0.7756
0.7205 2.6639 1950 0.6170 0.7633 0.7697 0.7633 0.7609
0.5272 2.7322 2000 0.5920 0.7748 0.7774 0.7748 0.7751
0.5272 2.8005 2050 0.6260 0.7594 0.7754 0.7594 0.7602
0.5272 2.8689 2100 0.5824 0.7932 0.8011 0.7932 0.7929
0.5272 2.9372 2150 0.5796 0.7879 0.7888 0.7879 0.7861
0.5272 3.0055 2200 0.5765 0.7932 0.7959 0.7932 0.7923
0.5272 3.0738 2250 0.5710 0.7940 0.8033 0.7940 0.7956
0.5272 3.1421 2300 0.5902 0.7825 0.7881 0.7825 0.7822
0.5272 3.2104 2350 0.5540 0.7978 0.8007 0.7978 0.7982
0.5272 3.2787 2400 0.5843 0.7863 0.7963 0.7863 0.7869
0.5272 3.3470 2450 0.5719 0.8002 0.8071 0.8002 0.8004
0.4067 3.4153 2500 0.5610 0.8048 0.8115 0.8048 0.8063
0.4067 3.4836 2550 0.5584 0.8009 0.8068 0.8009 0.8023
0.4067 3.5519 2600 0.5661 0.7971 0.8023 0.7971 0.7983
0.4067 3.6202 2650 0.5789 0.7978 0.7996 0.7978 0.7970
0.4067 3.6885 2700 0.6037 0.7848 0.7934 0.7848 0.7856
0.4067 3.7568 2750 0.5666 0.8009 0.8084 0.8009 0.8024
0.4067 3.8251 2800 0.5925 0.7925 0.8055 0.7925 0.7932
0.4067 3.8934 2850 0.5872 0.8055 0.8124 0.8055 0.8073
0.4067 3.9617 2900 0.5637 0.8040 0.8056 0.8040 0.8033
0.4067 4.0301 2950 0.5385 0.8101 0.8129 0.8101 0.8100
0.3331 4.0984 3000 0.5727 0.7955 0.8020 0.7955 0.7972
0.3331 4.1667 3050 0.5755 0.7963 0.8021 0.7963 0.7962
0.3331 4.2350 3100 0.5668 0.8048 0.8097 0.8048 0.8058
0.3331 4.3033 3150 0.5994 0.7986 0.8083 0.7986 0.7999
0.3331 4.3716 3200 0.5886 0.7986 0.8054 0.7986 0.7996
0.3331 4.4399 3250 0.5933 0.7986 0.8091 0.7986 0.8006
0.3331 4.5082 3300 0.6012 0.8002 0.8086 0.8002 0.8017
0.3331 4.5765 3350 0.5947 0.8040 0.8073 0.8040 0.8031
0.3331 4.6448 3400 0.5596 0.8125 0.8132 0.8125 0.8121
0.3331 4.7131 3450 0.5737 0.8048 0.8082 0.8048 0.8054
0.2431 4.7814 3500 0.5822 0.8101 0.8155 0.8101 0.8110
0.2431 4.8497 3550 0.5520 0.8155 0.8177 0.8155 0.8157
0.2431 4.9180 3600 0.5730 0.8125 0.8157 0.8125 0.8127
0.2431 4.9863 3650 0.5790 0.8055 0.8147 0.8055 0.8069
0.2431 5.0546 3700 0.5803 0.8109 0.8139 0.8109 0.8116
0.2431 5.1230 3750 0.5903 0.8132 0.8152 0.8132 0.8130
0.2431 5.1913 3800 0.5632 0.8240 0.8261 0.8240 0.8245
0.2431 5.2596 3850 0.6303 0.8017 0.8077 0.8017 0.8031
0.2431 5.3279 3900 0.5857 0.8148 0.8198 0.8148 0.8158
0.2431 5.3962 3950 0.5705 0.8171 0.8195 0.8171 0.8176
0.1805 5.4645 4000 0.5788 0.8201 0.8204 0.8201 0.8200
0.1805 5.5328 4050 0.5936 0.8101 0.8149 0.8101 0.8104
0.1805 5.6011 4100 0.5875 0.8163 0.8195 0.8163 0.8166
0.1805 5.6694 4150 0.6021 0.8171 0.8224 0.8171 0.8182
0.1805 5.7377 4200 0.5693 0.8186 0.8216 0.8186 0.8192
0.1805 5.8060 4250 0.5950 0.8155 0.8177 0.8155 0.8157
0.1805 5.8743 4300 0.6180 0.8086 0.8143 0.8086 0.8091
0.1805 5.9426 4350 0.5957 0.8155 0.8197 0.8155 0.8162
0.1805 6.0109 4400 0.6080 0.8140 0.8179 0.8140 0.8142
0.1805 6.0792 4450 0.5948 0.8178 0.8197 0.8178 0.8183
0.1547 6.1475 4500 0.5838 0.8217 0.8228 0.8217 0.8219
0.1547 6.2158 4550 0.6166 0.8148 0.8178 0.8148 0.8148
0.1547 6.2842 4600 0.6036 0.8224 0.8264 0.8224 0.8230
0.1547 6.3525 4650 0.6064 0.8232 0.8265 0.8232 0.8229
0.1547 6.4208 4700 0.6158 0.8171 0.8206 0.8171 0.8177
0.1547 6.4891 4750 0.6404 0.8140 0.8185 0.8140 0.8142
0.1547 6.5574 4800 0.6165 0.8171 0.8211 0.8171 0.8179
0.1547 6.6257 4850 0.6126 0.8186 0.8237 0.8186 0.8193
0.1547 6.6940 4900 0.5903 0.8240 0.8251 0.8240 0.8242
0.1547 6.7623 4950 0.6012 0.8155 0.8203 0.8155 0.8165
0.1099 6.8306 5000 0.6131 0.8186 0.8208 0.8186 0.8191
0.1099 6.8989 5050 0.5935 0.8248 0.8262 0.8248 0.8252
0.1099 6.9672 5100 0.6264 0.8186 0.8216 0.8186 0.8189
0.1099 7.0355 5150 0.6274 0.8186 0.8225 0.8186 0.8192
0.1099 7.1038 5200 0.6375 0.8217 0.8233 0.8217 0.8218
0.1099 7.1721 5250 0.6362 0.8148 0.8185 0.8148 0.8154
0.1099 7.2404 5300 0.6180 0.8194 0.8220 0.8194 0.8199
0.1099 7.3087 5350 0.6279 0.8201 0.8252 0.8201 0.8211
0.1099 7.3770 5400 0.6052 0.8217 0.8234 0.8217 0.8219
0.1099 7.4454 5450 0.6075 0.8217 0.8228 0.8217 0.8219
0.0859 7.5137 5500 0.6354 0.8178 0.8220 0.8178 0.8183
0.0859 7.5820 5550 0.6367 0.8163 0.8205 0.8163 0.8170
0.0859 7.6503 5600 0.6088 0.8240 0.8254 0.8240 0.8242
0.0859 7.7186 5650 0.6100 0.8240 0.8269 0.8240 0.8245
0.0859 7.7869 5700 0.6208 0.8232 0.8258 0.8232 0.8239
0.0859 7.8552 5750 0.6302 0.8278 0.8301 0.8278 0.8283
0.0859 7.9235 5800 0.6295 0.8240 0.8268 0.8240 0.8246
0.0859 7.9918 5850 0.6438 0.8240 0.8284 0.8240 0.8247
0.0859 8.0601 5900 0.6334 0.8217 0.8257 0.8217 0.8224
0.0859 8.1284 5950 0.6313 0.8201 0.8237 0.8201 0.8208
0.0733 8.1967 6000 0.6301 0.8194 0.8228 0.8194 0.8200

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
104
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nzm97/math_question_grade_detection_v12-16-24_v1

Finetuned
(69)
this model