math_question_grade_detection_v12

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8913
  • Accuracy: 0.7397
  • Precision: 0.7255
  • Recall: 0.7397
  • F1: 0.7178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.0855 50 3.0343 0.1710 0.1287 0.1710 0.0917
No log 0.1709 100 2.4792 0.3151 0.2979 0.3151 0.2439
No log 0.2564 150 2.1397 0.4428 0.4101 0.4428 0.3752
No log 0.3419 200 1.9824 0.4419 0.3872 0.4419 0.3638
No log 0.4274 250 1.7765 0.5072 0.4772 0.5072 0.4666
No log 0.5128 300 1.6510 0.5524 0.5347 0.5524 0.5147
No log 0.5983 350 1.5160 0.5793 0.5501 0.5793 0.5319
No log 0.6838 400 1.4481 0.5898 0.5608 0.5898 0.5437
No log 0.7692 450 1.3791 0.6148 0.5758 0.6148 0.5678
1.9748 0.8547 500 1.3154 0.6196 0.6123 0.6196 0.5779
1.9748 0.9402 550 1.2399 0.6484 0.6168 0.6484 0.6119
1.9748 1.0256 600 1.1968 0.6340 0.6181 0.6340 0.5889
1.9748 1.1111 650 1.2477 0.6215 0.6014 0.6215 0.5825
1.9748 1.1966 700 1.2098 0.6340 0.6285 0.6340 0.5884
1.9748 1.2821 750 1.1316 0.6619 0.6442 0.6619 0.6385
1.9748 1.3675 800 1.0783 0.6744 0.6644 0.6744 0.6462
1.9748 1.4530 850 1.0512 0.6907 0.6728 0.6907 0.6583
1.9748 1.5385 900 1.0388 0.6945 0.6909 0.6945 0.6697
1.9748 1.6239 950 0.9954 0.6974 0.6748 0.6974 0.6707
1.0265 1.7094 1000 0.9812 0.7128 0.6888 0.7128 0.6874
1.0265 1.7949 1050 0.9717 0.7099 0.6907 0.7099 0.6852
1.0265 1.8803 1100 0.9437 0.7099 0.6823 0.7099 0.6866
1.0265 1.9658 1150 0.9724 0.7061 0.7096 0.7061 0.6800
1.0265 2.0513 1200 0.9168 0.7224 0.7099 0.7224 0.6976
1.0265 2.1368 1250 0.9097 0.7243 0.7109 0.7243 0.6996
1.0265 2.2222 1300 0.9072 0.7329 0.7336 0.7329 0.7083
1.0265 2.3077 1350 0.9028 0.7262 0.7114 0.7262 0.7033
1.0265 2.3932 1400 0.8951 0.7301 0.7145 0.7301 0.7068
1.0265 2.4786 1450 0.8949 0.7378 0.7339 0.7378 0.7154
0.687 2.5641 1500 0.8913 0.7397 0.7255 0.7397 0.7178

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
160
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nzm97/math_question_grade_detection_v12

Finetuned
(2415)
this model