|
--- |
|
license: apache-2.0 |
|
base_model: |
|
- mistralai/Mistral-7B-v0.1 |
|
datasets: |
|
- nvidia/OpenMathInstruct-1 |
|
language: |
|
- en |
|
tags: |
|
- nvidia |
|
- code |
|
- math |
|
--- |
|
|
|
|
|
# OpenMath-Mistral-7B-v0.1-hf |
|
|
|
OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks |
|
executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co./datasets/nvidia/OpenMathInstruct-1), |
|
a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed |
|
[Mixtral-8x7B](https://huggingface.co./mistralai/Mixtral-8x7B-v0.1) model. |
|
|
|
<table border="1"> |
|
<tr> |
|
<td></td> |
|
<td colspan="2" style="text-align: center;">greedy</td> |
|
<td colspan="2" style="text-align: center;">majority@50</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: center;">model</td> |
|
<td style="text-align: center;">GSM8K</td> |
|
<td style="text-align: center;">MATH</td> |
|
<td style="text-align: center;">GMS8K</td> |
|
<td style="text-align: center;">MATH</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td> |
|
<td style="text-align: center;">75.9</td> |
|
<td style="text-align: center;">43.6</td> |
|
<td style="text-align: center;">84.8</td> |
|
<td style="text-align: center;">55.6</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co./nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co./nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td> |
|
<td style="text-align: center;">80.2</td> |
|
<td style="text-align: center;">44.5</td> |
|
<td style="text-align: center;">86.9</td> |
|
<td style="text-align: center;">57.2</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td> |
|
<td style="text-align: center;">78.8</td> |
|
<td style="text-align: center;">45.5</td> |
|
<td style="text-align: center;">86.8</td> |
|
<td style="text-align: center;">57.6</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td> |
|
<td style="text-align: center;">80.7</td> |
|
<td style="text-align: center;">48.3</td> |
|
<td style="text-align: center;">88.0</td> |
|
<td style="text-align: center;">60.2</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co./nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co./nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td> |
|
<td style="text-align: center;"><b>84.7</b></td> |
|
<td style="text-align: center;">46.3</td> |
|
<td style="text-align: center;">90.1</td> |
|
<td style="text-align: center;">58.3</td> |
|
</tr> |
|
<tr> |
|
<td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co./nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td> |
|
<td style="text-align: center;">84.6</td> |
|
<td style="text-align: center;"><b>50.7</b></td> |
|
<td style="text-align: center;"><b>90.8</b></td> |
|
<td style="text-align: center;"><b>60.4</b></td> |
|
</tr> |
|
</table> |
|
|
|
The pipeline we used to produce these models is fully open-sourced! |
|
|
|
- [Code](https://github.com/Kipok/NeMo-Skills) |
|
- [Models](https://huggingface.co./collections/nvidia/openmath-65c5619de2ba059be0775014) |
|
- [Dataset](https://huggingface.co./datasets/nvidia/OpenMathInstruct-1) |
|
|
|
See our [paper](https://arxiv.org/abs/2402.10176) for more details! |
|
|
|
# How to use the models? |
|
|
|
Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands! |
|
|
|
# Reproducing our results |
|
|
|
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results. |
|
|
|
# Improving other models |
|
|
|
To improve other models or to learn more about our code, read through the docs below. |
|
|
|
- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills) |
|
- [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md) |
|
- [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md) |
|
- [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md) |
|
|
|
In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/), |
|
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere. |
|
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, |
|
offering enterprises an easy, cost-effective, and fast way to adopt generative AI. |
|
|
|
# Citation |
|
|
|
If you find our work useful, please consider citing us! |
|
|
|
```bibtex |
|
@article{toshniwal2024openmath, |
|
title = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset}, |
|
author = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman}, |
|
year = {2024}, |
|
journal = {arXiv preprint arXiv: Arxiv-2402.10176} |
|
} |
|
``` |