Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,102 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags: []
|
4 |
---
|
|
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
10 |
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
|
35 |
|
36 |
-
## Uses
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
[
|
45 |
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
{}
|
|
|
3 |
---
|
4 |
+
# Hymba: A Hybrid-head Architecture for Small Language Models
|
5 |
|
6 |
+
[[Slide](https://docs.google.com/presentation/d/1uidqBfDy8a149yE1-AKtNnPm1qwa01hp8sOj3_KAoMI/edit#slide=id.g2f73b22dcb8_0_1017)][Technical Report] **!!! This huggingface repo is still under development.**
|
7 |
|
8 |
+
Developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research.
|
9 |
|
10 |
|
11 |
+
## Hymba: A Novel LM Architecture
|
12 |
+
- Fuse attention heads and SSM heads within the same layer, offering parallel and complementary processing of the same inputs
|
13 |
|
14 |
+
<div align="center">
|
15 |
+
<img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/module.png" alt="Hymba Module" width="600">
|
16 |
+
</div>
|
17 |
|
18 |
+
- Introduce meta tokens that are prepended to the input sequences and interact with all subsequent tokens, thus storing important information and alleviating the burden of "forced-to-attend" in attention
|
19 |
|
20 |
+
- Integrate with cross-layer KV sharing and global-local attention to further boost memory and computation efficiency
|
21 |
|
22 |
+
<div align="center">
|
23 |
+
<img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/macro_arch.png" alt="Hymba Model" width="600">
|
24 |
+
</div>
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
## Hymba: Performance Highlights
|
28 |
+
- Our Hymba-1.5B-Base outperforms all sub-2B public models, e.g., matching Llama 3.2 3B’s commonsense reasoning accuracy, being 3.49× faster, and reducing cache size by 11.7×
|
29 |
+
- More comparisons can be found in our [Technical Report].
|
30 |
|
31 |
+
<div align="center">
|
32 |
+
<img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/performance1.png" alt="Compare with SoTA Small LMs" width="600">
|
33 |
+
</div>
|
34 |
|
35 |
+
<div align="center">
|
36 |
+
<img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/performance2.png" alt="Compare with SoTA Small LMs" width="600">
|
37 |
+
</div>
|
38 |
|
|
|
39 |
|
40 |
+
## Hymba-1.5B: Model Usage
|
41 |
|
42 |
+
We release our Hymba-1.5B-Base model and offer the instructions to use our model as follows.
|
43 |
|
44 |
+
### Step 1: Environment Setup
|
45 |
|
46 |
+
Since our model employs [FlexAttention](https://pytorch.org/blog/flexattention/), which relies on Pytorch2.5 and other related dependencies, we provide three ways to set up the environment:
|
47 |
|
48 |
+
- **[Pip]** Install the related packages using our provided `requirement.txt`:
|
49 |
+
```
|
50 |
+
pip install -r https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/requirements.txt
|
51 |
+
```
|
52 |
|
53 |
+
- **[Docker]** We have prepared a docker image with all of Hymba's dependencies installed. You can download our docker image and start a container using the following commands:
|
54 |
|
55 |
+
```
|
56 |
+
wget http://10.137.9.244:8000/hymba_docker.tar
|
57 |
+
docker load -i hymba.tar
|
58 |
+
docker run --security-opt seccomp=unconfined --gpus all -v /home/$USER:/home/$USER -it hymba:v1 bash
|
59 |
+
```
|
60 |
|
61 |
+
- **[Internal Only]** If you are an internal user from NVIDIA and are using the ORD cluster, you can use our prepared `sqsh` file to apply for an interactive node:
|
62 |
|
63 |
+
```
|
64 |
+
srun -A nvr_lpr_llm --partition interactive --time 4:00:00 --gpus 8 --container-image /lustre/fsw/portfolios/nvr/users/yongganf/docker/megatron_py25.sqsh --container-mounts=$HOME:/home,/lustre:/lustre --pty bash
|
65 |
+
```
|
66 |
|
67 |
+
### Step 2: Chat with Hymba
|
68 |
+
After setting up the environment, you can use the following script to chat with our Model
|
69 |
|
70 |
+
```
|
71 |
+
from transformers import LlamaTokenizer, AutoModelForCausalLM, AutoTokenizer, AutoModel
|
72 |
+
from huggingface_hub import login
|
73 |
+
import torch
|
74 |
|
75 |
+
login()
|
76 |
|
77 |
+
# Load LLaMA2's tokenizer
|
78 |
+
tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b")
|
79 |
+
|
80 |
+
# Load Hymba-1.5B
|
81 |
+
model = AutoModelForCausalLM.from_pretrained("nvidia/Hymba-1.5B", trust_remote_code=True).cuda().to(torch.bfloat16)
|
82 |
|
83 |
+
# Chat with our model
|
84 |
+
def chat_with_model(prompt, model, tokenizer, max_length=64):
|
85 |
+
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
|
86 |
+
outputs = model.generate(inputs.input_ids, max_length=max_length, do_sample=False, temperature=0.7, use_cache=True)
|
87 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
88 |
+
return response
|
89 |
|
90 |
+
print("Chat with the model (type 'exit' to quit):")
|
91 |
+
while True:
|
92 |
+
print("User:")
|
93 |
+
prompt = input()
|
94 |
+
if prompt.lower() == "exit":
|
95 |
+
break
|
96 |
+
|
97 |
+
# Get the model's response
|
98 |
+
response = chat_with_model(prompt, model, tokenizer)
|
99 |
+
|
100 |
+
print(f"Model: {response}")
|
101 |
|
102 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|