YongganFu commited on
Commit
8575357
·
verified ·
1 Parent(s): a9cf19c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -168
README.md CHANGED
@@ -1,199 +1,102 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
 
11
 
12
- ## Model Details
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
 
 
63
 
64
- ### Recommendations
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
 
 
 
 
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ {}
 
3
  ---
4
+ # Hymba: A Hybrid-head Architecture for Small Language Models
5
 
6
+ [[Slide](https://docs.google.com/presentation/d/1uidqBfDy8a149yE1-AKtNnPm1qwa01hp8sOj3_KAoMI/edit#slide=id.g2f73b22dcb8_0_1017)][Technical Report] **!!! This huggingface repo is still under development.**
7
 
8
+ Developed by Deep Learning Efficiency Research (DLER) team at NVIDIA Research.
9
 
10
 
11
+ ## Hymba: A Novel LM Architecture
12
+ - Fuse attention heads and SSM heads within the same layer, offering parallel and complementary processing of the same inputs
13
 
14
+ <div align="center">
15
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/module.png" alt="Hymba Module" width="600">
16
+ </div>
17
 
18
+ - Introduce meta tokens that are prepended to the input sequences and interact with all subsequent tokens, thus storing important information and alleviating the burden of "forced-to-attend" in attention
19
 
20
+ - Integrate with cross-layer KV sharing and global-local attention to further boost memory and computation efficiency
21
 
22
+ <div align="center">
23
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/macro_arch.png" alt="Hymba Model" width="600">
24
+ </div>
25
 
 
 
 
 
 
 
 
26
 
27
+ ## Hymba: Performance Highlights
28
+ - Our Hymba-1.5B-Base outperforms all sub-2B public models, e.g., matching Llama 3.2 3B’s commonsense reasoning accuracy, being 3.49× faster, and reducing cache size by 11.7×
29
+ - More comparisons can be found in our [Technical Report].
30
 
31
+ <div align="center">
32
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/performance1.png" alt="Compare with SoTA Small LMs" width="600">
33
+ </div>
34
 
35
+ <div align="center">
36
+ <img src="https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/images/performance2.png" alt="Compare with SoTA Small LMs" width="600">
37
+ </div>
38
 
 
39
 
40
+ ## Hymba-1.5B: Model Usage
41
 
42
+ We release our Hymba-1.5B-Base model and offer the instructions to use our model as follows.
43
 
44
+ ### Step 1: Environment Setup
45
 
46
+ Since our model employs [FlexAttention](https://pytorch.org/blog/flexattention/), which relies on Pytorch2.5 and other related dependencies, we provide three ways to set up the environment:
47
 
48
+ - **[Pip]** Install the related packages using our provided `requirement.txt`:
49
+ ```
50
+ pip install -r https://huggingface.co/nvidia/Hymba-1.5B/resolve/main/requirements.txt
51
+ ```
52
 
53
+ - **[Docker]** We have prepared a docker image with all of Hymba's dependencies installed. You can download our docker image and start a container using the following commands:
54
 
55
+ ```
56
+ wget http://10.137.9.244:8000/hymba_docker.tar
57
+ docker load -i hymba.tar
58
+ docker run --security-opt seccomp=unconfined --gpus all -v /home/$USER:/home/$USER -it hymba:v1 bash
59
+ ```
60
 
61
+ - **[Internal Only]** If you are an internal user from NVIDIA and are using the ORD cluster, you can use our prepared `sqsh` file to apply for an interactive node:
62
 
63
+ ```
64
+ srun -A nvr_lpr_llm --partition interactive --time 4:00:00 --gpus 8 --container-image /lustre/fsw/portfolios/nvr/users/yongganf/docker/megatron_py25.sqsh --container-mounts=$HOME:/home,/lustre:/lustre --pty bash
65
+ ```
66
 
67
+ ### Step 2: Chat with Hymba
68
+ After setting up the environment, you can use the following script to chat with our Model
69
 
70
+ ```
71
+ from transformers import LlamaTokenizer, AutoModelForCausalLM, AutoTokenizer, AutoModel
72
+ from huggingface_hub import login
73
+ import torch
74
 
75
+ login()
76
 
77
+ # Load LLaMA2's tokenizer
78
+ tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b")
79
+
80
+ # Load Hymba-1.5B
81
+ model = AutoModelForCausalLM.from_pretrained("nvidia/Hymba-1.5B", trust_remote_code=True).cuda().to(torch.bfloat16)
82
 
83
+ # Chat with our model
84
+ def chat_with_model(prompt, model, tokenizer, max_length=64):
85
+ inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
86
+ outputs = model.generate(inputs.input_ids, max_length=max_length, do_sample=False, temperature=0.7, use_cache=True)
87
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
88
+ return response
89
 
90
+ print("Chat with the model (type 'exit' to quit):")
91
+ while True:
92
+ print("User:")
93
+ prompt = input()
94
+ if prompt.lower() == "exit":
95
+ break
96
+
97
+ # Get the model's response
98
+ response = chat_with_model(prompt, model, tokenizer)
99
+
100
+ print(f"Model: {response}")
101
 
102
+ ```