Qwen2.5 Merged
Collection
Making Qwen2.5 greater with Merging
•
5 items
•
Updated
This is a merge of pre-trained language models created using mergekit.
Metric | Value |
---|---|
GSM8k (zero-shot) | 86.20 |
HellaSwag (zero-Shot) | 49.91 |
MBPP (zero-shot) | 55.20 |
This model was merged using the Task Arithmetic merge method using Qwen/Qwen2.5-7B as a base.
The following models were included in the merge:
The following YAML configuration was used to produce this model:
base_model: Qwen/Qwen2.5-7B
dtype: bfloat16
merge_method: task_arithmetic
parameters:
lambda: 0.5676097213578511
normalize: 1.0
slices:
- sources:
- layer_range: [0, 28]
model: Qwen/Qwen2.5-7B
- layer_range: [0, 28]
model: Qwen/Qwen2.5-Math-7B
parameters:
weight: 0.5215841338521604
- layer_range: [0, 28]
model: Qwen/Qwen2.5-Coder-7B
parameters:
weight: 0.13680114132969845
- layer_range: [0, 28]
model: Qwen/Qwen2.5-7B-Instruct
parameters:
weight: 0.8507353075455186