llama3-8b-instruct-qlora-large
This model is a fine-tuned version of LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8530
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3454 | 1.0 | 158 | 1.2439 |
2.1288 | 2.0 | 316 | 1.0900 |
2.0335 | 3.0 | 474 | 1.0394 |
1.9315 | 4.0 | 632 | 0.9995 |
1.804 | 5.0 | 790 | 0.9605 |
1.6583 | 6.0 | 948 | 0.9411 |
1.4994 | 7.0 | 1106 | 0.9283 |
1.3388 | 8.0 | 1264 | 0.9158 |
1.1894 | 9.0 | 1422 | 0.9103 |
1.0616 | 10.0 | 1580 | 0.9027 |
0.9461 | 11.0 | 1738 | 0.8963 |
0.8447 | 12.0 | 1896 | 0.8922 |
0.7575 | 13.0 | 2054 | 0.8887 |
0.6817 | 14.0 | 2212 | 0.8803 |
0.6192 | 15.0 | 2370 | 0.8761 |
0.5669 | 16.0 | 2528 | 0.8715 |
0.5196 | 17.0 | 2686 | 0.8719 |
0.479 | 18.0 | 2844 | 0.8683 |
0.4473 | 19.0 | 3002 | 0.8662 |
0.4202 | 20.0 | 3160 | 0.8624 |
0.397 | 21.0 | 3318 | 0.8590 |
0.377 | 22.0 | 3476 | 0.8573 |
0.3622 | 23.0 | 3634 | 0.8558 |
0.3514 | 24.0 | 3792 | 0.8548 |
0.3434 | 25.0 | 3950 | 0.8543 |
0.3349 | 26.0 | 4108 | 0.8541 |
0.332 | 27.0 | 4266 | 0.8538 |
0.328 | 28.0 | 4424 | 0.8541 |
0.3286 | 29.0 | 4582 | 0.8532 |
0.3279 | 30.0 | 4740 | 0.8530 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for nrishabh/llama3-8b-instruct-qlora-large
Base model
LoftQ/Meta-Llama-3-8B-Instruct-4bit-64rank