Edit model card

t5-base-mse-summarization

This model is a fine-tuned version of t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8743
  • Rouge1: 45.9597
  • Rouge2: 26.8086
  • Rougel: 39.935
  • Rougelsum: 43.8897
  • Bleurt: -0.7132
  • Gen Len: 18.464

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleurt Gen Len
1.2568 1.0 267 1.0472 41.6829 21.9654 35.4264 39.5556 -0.8231 18.522
1.1085 2.0 534 0.9840 43.1479 23.3351 36.9244 40.886 -0.7843 18.534
1.0548 3.0 801 0.9515 44.1511 24.4912 37.9549 41.9984 -0.7702 18.528
1.0251 4.0 1068 0.9331 44.426 24.9439 38.2978 42.1731 -0.7633 18.619
0.9888 5.0 1335 0.9201 45.0385 25.524 38.8681 42.8998 -0.7497 18.523
0.9623 6.0 1602 0.9119 44.8648 25.469 38.9281 42.7798 -0.7496 18.537
0.9502 7.0 1869 0.9015 44.9668 25.5041 38.9463 42.9368 -0.7412 18.48
0.9316 8.0 2136 0.8973 45.3028 25.7232 39.1533 43.277 -0.7318 18.523
0.9191 9.0 2403 0.8921 45.2901 25.916 39.2909 43.3022 -0.7296 18.529
0.9122 10.0 2670 0.8889 45.3535 26.1369 39.4861 43.28 -0.7271 18.545
0.8993 11.0 2937 0.8857 45.5345 26.1669 39.5656 43.4664 -0.7269 18.474
0.8905 12.0 3204 0.8816 45.7796 26.4145 39.8117 43.734 -0.7185 18.503
0.8821 13.0 3471 0.8794 45.7163 26.4314 39.719 43.6407 -0.7211 18.496
0.8789 14.0 3738 0.8784 45.9097 26.7281 39.9071 43.8105 -0.7127 18.452
0.8665 15.0 4005 0.8765 46.1148 26.8882 40.1006 43.988 -0.711 18.443
0.8676 16.0 4272 0.8766 45.9119 26.7674 39.9001 43.8237 -0.718 18.491
0.8637 17.0 4539 0.8758 45.9158 26.7153 39.9463 43.8323 -0.7183 18.492
0.8622 18.0 4806 0.8752 45.9508 26.75 39.9533 43.8795 -0.7144 18.465
0.8588 19.0 5073 0.8744 45.9192 26.7352 39.8921 43.8204 -0.7148 18.462
0.8554 20.0 5340 0.8743 45.9597 26.8086 39.935 43.8897 -0.7132 18.464

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.