lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7699
  • Answer: {'precision': 0.8906439854191981, 'recall': 0.8971848225214198, 'f1': 0.8939024390243904, 'number': 817}
  • Header: {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119}
  • Question: {'precision': 0.8778359511343804, 'recall': 0.9340761374187558, 'f1': 0.9050832208726944, 'number': 1077}
  • Overall Precision: 0.8706
  • Overall Recall: 0.8957
  • Overall F1: 0.8830
  • Overall Accuracy: 0.7973

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4312 10.53 200 0.9853 {'precision': 0.8581818181818182, 'recall': 0.8665850673194615, 'f1': 0.8623629719853837, 'number': 817} {'precision': 0.5625, 'recall': 0.5294117647058824, 'f1': 0.5454545454545455, 'number': 119} {'precision': 0.8788706739526412, 'recall': 0.8960074280408542, 'f1': 0.8873563218390804, 'number': 1077} 0.8531 0.8624 0.8577 0.8172
0.0478 21.05 400 1.2825 {'precision': 0.8571428571428571, 'recall': 0.9033047735618115, 'f1': 0.8796185935637664, 'number': 817} {'precision': 0.5136986301369864, 'recall': 0.6302521008403361, 'f1': 0.5660377358490567, 'number': 119} {'precision': 0.8739650413983441, 'recall': 0.8820798514391829, 'f1': 0.878003696857671, 'number': 1077} 0.8419 0.8758 0.8585 0.8026
0.0127 31.58 600 1.4791 {'precision': 0.8568075117370892, 'recall': 0.8935128518971848, 'f1': 0.8747753145596165, 'number': 817} {'precision': 0.5779816513761468, 'recall': 0.5294117647058824, 'f1': 0.5526315789473684, 'number': 119} {'precision': 0.8909426987060998, 'recall': 0.8950789229340761, 'f1': 0.8930060213061601, 'number': 1077} 0.8600 0.8728 0.8664 0.7957
0.0073 42.11 800 1.3846 {'precision': 0.8853046594982079, 'recall': 0.9069767441860465, 'f1': 0.8960096735187424, 'number': 817} {'precision': 0.5333333333333333, 'recall': 0.6050420168067226, 'f1': 0.5669291338582677, 'number': 119} {'precision': 0.8932584269662921, 'recall': 0.8857938718662952, 'f1': 0.8895104895104896, 'number': 1077} 0.8662 0.8778 0.8719 0.8142
0.0023 52.63 1000 1.5955 {'precision': 0.8430034129692833, 'recall': 0.9069767441860465, 'f1': 0.8738207547169811, 'number': 817} {'precision': 0.6190476190476191, 'recall': 0.5462184873949579, 'f1': 0.5803571428571429, 'number': 119} {'precision': 0.8935574229691877, 'recall': 0.8885793871866295, 'f1': 0.8910614525139665, 'number': 1077} 0.8579 0.8758 0.8668 0.7992
0.0023 63.16 1200 1.6214 {'precision': 0.8955773955773956, 'recall': 0.8922888616891065, 'f1': 0.8939301042305334, 'number': 817} {'precision': 0.5882352941176471, 'recall': 0.5882352941176471, 'f1': 0.5882352941176471, 'number': 119} {'precision': 0.8841354723707665, 'recall': 0.9210770659238626, 'f1': 0.9022282855843565, 'number': 1077} 0.8715 0.8897 0.8805 0.8057
0.0016 73.68 1400 1.8002 {'precision': 0.8732394366197183, 'recall': 0.9106487148102815, 'f1': 0.8915518274415818, 'number': 817} {'precision': 0.5765765765765766, 'recall': 0.5378151260504201, 'f1': 0.5565217391304348, 'number': 119} {'precision': 0.8892921960072595, 'recall': 0.9099350046425255, 'f1': 0.8994951812758146, 'number': 1077} 0.8659 0.8882 0.8769 0.7860
0.0013 84.21 1600 1.7699 {'precision': 0.8906439854191981, 'recall': 0.8971848225214198, 'f1': 0.8939024390243904, 'number': 817} {'precision': 0.6274509803921569, 'recall': 0.5378151260504201, 'f1': 0.579185520361991, 'number': 119} {'precision': 0.8778359511343804, 'recall': 0.9340761374187558, 'f1': 0.9050832208726944, 'number': 1077} 0.8706 0.8957 0.8830 0.7973
0.0008 94.74 1800 1.7824 {'precision': 0.8733572281959379, 'recall': 0.8947368421052632, 'f1': 0.8839177750906893, 'number': 817} {'precision': 0.616822429906542, 'recall': 0.5546218487394958, 'f1': 0.5840707964601769, 'number': 119} {'precision': 0.8901996370235935, 'recall': 0.9108635097493036, 'f1': 0.9004130335016063, 'number': 1077} 0.8690 0.8833 0.8761 0.8019
0.0005 105.26 2000 1.7894 {'precision': 0.872791519434629, 'recall': 0.9069767441860465, 'f1': 0.8895558223289316, 'number': 817} {'precision': 0.6036036036036037, 'recall': 0.5630252100840336, 'f1': 0.582608695652174, 'number': 119} {'precision': 0.8931506849315068, 'recall': 0.9080779944289693, 'f1': 0.9005524861878452, 'number': 1077} 0.8691 0.8872 0.8781 0.7940
0.0002 115.79 2200 1.8409 {'precision': 0.8665893271461717, 'recall': 0.9143206854345165, 'f1': 0.8898153662894581, 'number': 817} {'precision': 0.6296296296296297, 'recall': 0.5714285714285714, 'f1': 0.5991189427312775, 'number': 119} {'precision': 0.8978644382544104, 'recall': 0.8978644382544104, 'f1': 0.8978644382544104, 'number': 1077} 0.8705 0.8852 0.8778 0.7982
0.0002 126.32 2400 1.8311 {'precision': 0.8709302325581395, 'recall': 0.9167686658506732, 'f1': 0.8932617769827073, 'number': 817} {'precision': 0.6018518518518519, 'recall': 0.5462184873949579, 'f1': 0.5726872246696034, 'number': 119} {'precision': 0.893953488372093, 'recall': 0.8922934076137419, 'f1': 0.8931226765799257, 'number': 1077} 0.8688 0.8818 0.8752 0.7988

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.