This model is a fine-tuned version of Llama2-13B described in our paper RAG-LER: Ranking Adapted Generation with Language-Model Enabled Regulation
How to Get Started with the Model
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("notoookay/ragler-llama2-13b")
model = AutoModelForCausalLM.from_pretrained("notoookay/ragler-llama2-13b", torch_dtype=torch.bfloat16, device_map="auto")
# Example usage
input_text = "### Instruction:\nAnswer the following question.\n\n### Input:\nQuestion:\nWhat is the capital of France?\n\n### Response:\n"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
The corresponding re-ranker supervised by this model can be found here.
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.