base_model: nomic-ai/nomic-embed-text-v1.5
inference: false
language:
- en
license: apache-2.0
model_creator: Nomic
model_name: nomic-embed-text-v1.5
model_type: bert
pipeline_tag: sentence-similarity
quantized_by: Nomic
tags:
- feature-extraction
- sentence-similarity
nomic-embed-text-v1.5 - GGUF
Original model: nomic-embed-text-v1.5
Description
This repo contains llama.cpp-compatible files for nomic-embed-text-v1.5 in GGUF format.
llama.cpp will default to 2048 tokens of context with these files. To use the full 8192 tokens that Nomic Embed is benchmarked on, you will have to choose a context extension method. The original model uses Dynamic NTK-Aware RoPE scaling, but that is not currently available in llama.cpp. A combination of YaRN and linear scaling is an acceptable substitute.
These files were converted and quantized with llama.cpp commit 594fca3fe.
Example llama.cpp
Command
Compute a single embedding:
./embedding -ngl 99 -m nomic-embed-text-v1.5.f16.gguf -c 8192 -b 8192 --rope-scaling yarn --rope-freq-scale .75 -p 'search_query: What is TSNE?'
You can also submit a batch of texts to embed, as long as the total number of tokens does not exceed the context length. Only the first three embeddings are shown by the embedding
example.
texts.txt:
search_query: What is TSNE?
search_query: Who is Laurens Van der Maaten?
Compute multiple embeddings:
./embedding -ngl 99 -m nomic-embed-text-v1.5.f16.gguf -c 8192 -b 8192 --rope-scaling yarn --rope-freq-scale .75 -f texts.txt
Compatibility
These files are compatible with llama.cpp as commit ea9c8e114 from 2/13/2024.
Provided Files
The below table shows the mean squared error of the embeddings produced by these quantizations of Nomic Embed relative to the Sentence Transformers implementation.
Name | Quant | Size | MSE |
---|---|---|---|
nomic-embed-text-v1.5.Q2_K.gguf | Q2_K | 48 MiB | 2.33e-03 |
nomic-embed-text-v1.5.Q3_K_S.gguf | Q3_K_S | 57 MiB | 1.19e-03 |
nomic-embed-text-v1.5.Q3_K_M.gguf | Q3_K_M | 65 MiB | 8.26e-04 |
nomic-embed-text-v1.5.Q3_K_L.gguf | Q3_K_L | 69 MiB | 7.93e-04 |
nomic-embed-text-v1.5.Q4_0.gguf | Q4_0 | 75 MiB | 6.32e-04 |
nomic-embed-text-v1.5.Q4_K_S.gguf | Q4_K_S | 75 MiB | 6.71e-04 |
nomic-embed-text-v1.5.Q4_K_M.gguf | Q4_K_M | 81 MiB | 2.42e-04 |
nomic-embed-text-v1.5.Q5_0.gguf | Q5_0 | 91 MiB | 2.35e-04 |
nomic-embed-text-v1.5.Q5_K_S.gguf | Q5_K_S | 91 MiB | 2.00e-04 |
nomic-embed-text-v1.5.Q5_K_M.gguf | Q5_K_M | 95 MiB | 6.55e-05 |
nomic-embed-text-v1.5.Q6_K.gguf | Q6_K | 108 MiB | 5.58e-05 |
nomic-embed-text-v1.5.Q8_0.gguf | Q8_0 | 140 MiB | 5.79e-06 |
nomic-embed-text-v1.5.f16.gguf | F16 | 262 MiB | 4.21e-10 |
nomic-embed-text-v1.5.f32.gguf | F32 | 262 MiB | 6.08e-11 |