base_model: bert-base-chinese | |
tags: | |
- generated_from_keras_callback | |
model-index: | |
- name: node-py/my_awesome_eli5_clm-model | |
results: [] | |
<!-- This model card has been generated automatically according to the information Keras had access to. You should | |
probably proofread and complete it, then remove this comment. --> | |
# node-py/my_awesome_eli5_clm-model | |
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co./bert-base-chinese) on an unknown dataset. | |
It achieves the following results on the evaluation set: | |
- Train Loss: 1.3093 | |
- Epoch: 37 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} | |
- training_precision: float32 | |
### Training results | |
| Train Loss | Epoch | | |
|:----------:|:-----:| | |
| 6.5795 | 0 | | |
| 5.8251 | 1 | | |
| 5.3850 | 2 | | |
| 5.0469 | 3 | | |
| 4.8048 | 4 | | |
| 4.6144 | 5 | | |
| 4.4743 | 6 | | |
| 4.3366 | 7 | | |
| 4.2178 | 8 | | |
| 4.1022 | 9 | | |
| 3.9908 | 10 | | |
| 3.8856 | 11 | | |
| 3.7700 | 12 | | |
| 3.6673 | 13 | | |
| 3.5560 | 14 | | |
| 3.4401 | 15 | | |
| 3.3328 | 16 | | |
| 3.2248 | 17 | | |
| 3.1290 | 18 | | |
| 3.0121 | 19 | | |
| 2.8978 | 20 | | |
| 2.7830 | 21 | | |
| 2.6913 | 22 | | |
| 2.5822 | 23 | | |
| 2.4772 | 24 | | |
| 2.3761 | 25 | | |
| 2.2792 | 26 | | |
| 2.1664 | 27 | | |
| 2.0731 | 28 | | |
| 1.9734 | 29 | | |
| 1.8900 | 30 | | |
| 1.7927 | 31 | | |
| 1.7036 | 32 | | |
| 1.6202 | 33 | | |
| 1.5329 | 34 | | |
| 1.4535 | 35 | | |
| 1.3778 | 36 | | |
| 1.3093 | 37 | | |
### Framework versions | |
- Transformers 4.44.0 | |
- TensorFlow 2.16.1 | |
- Datasets 2.21.0 | |
- Tokenizers 0.19.1 | |