ColorShadow-7B
This is a Gradient-SLERP merge between diffnamehard/Mistral-CatMacaroni-slerp-7B and cookinai/Valkyrie-V1 performed using mergekit.
Here is the config file used:
slices:
- sources:
- model: diffnamehard/Mistral-CatMacaroni-slerp-7B
layer_range: [0, 32]
- model: cookinai/Valkyrie-V1
layer_range: [0, 32]
merge_method: slerp
base_model: diffnamehard/Mistral-CatMacaroni-slerp-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.34 |
AI2 Reasoning Challenge (25-Shot) | 67.83 |
HellaSwag (10-Shot) | 85.15 |
MMLU (5-Shot) | 61.69 |
TruthfulQA (0-shot) | 59.56 |
Winogrande (5-shot) | 80.58 |
GSM8k (5-shot) | 55.19 |
- Downloads last month
- 1,318
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for nlpguy/ColorShadow-7B
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard67.830
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.150
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard61.690
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard59.560
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.580
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard55.190