Updates README.md sample running code to remove FutureWarning deprecation error for `ViTFeatureExtractor`.
496b5b1
tags: | |
- image-to-text | |
- image-captioning | |
license: apache-2.0 | |
widget: | |
- src: https://huggingface.co./datasets/mishig/sample_images/resolve/main/savanna.jpg | |
example_title: Savanna | |
- src: https://huggingface.co./datasets/mishig/sample_images/resolve/main/football-match.jpg | |
example_title: Football Match | |
- src: https://huggingface.co./datasets/mishig/sample_images/resolve/main/airport.jpg | |
example_title: Airport | |
# nlpconnect/vit-gpt2-image-captioning | |
This is an image captioning model trained by @ydshieh in [flax ](https://github.com/huggingface/transformers/tree/main/examples/flax/image-captioning) this is pytorch version of [this](https://huggingface.co./ydshieh/vit-gpt2-coco-en-ckpts). | |
# The Illustrated Image Captioning using transformers | |
![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png) | |
* https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/ | |
# Sample running code | |
```python | |
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def predict_step(image_paths): | |
images = [] | |
for image_path in image_paths: | |
i_image = Image.open(image_path) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
images.append(i_image) | |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
preds = [pred.strip() for pred in preds] | |
return preds | |
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed'] | |
``` | |
# Sample running code using transformers pipeline | |
```python | |
from transformers import pipeline | |
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") | |
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png") | |
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}] | |
``` | |
# Contact for any help | |
* https://huggingface.co./ankur310794 | |
* https://twitter.com/ankur310794 | |
* http://github.com/ankur3107 | |
* https://www.linkedin.com/in/ankur310794 |