Edit model card

PE-7b-full

This model is a fine-tuned version of stabilityai/StableBeluga-7B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0066
  • Rewards/chosen: -0.4634
  • Rewards/rejected: -29.4677
  • Rewards/accuracies: 0.9888
  • Rewards/margins: 29.0043
  • Logps/rejected: -123.7968
  • Logps/chosen: -86.4647
  • Logits/rejected: -0.9397
  • Logits/chosen: -1.0258

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-07
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5515 0.05 100 0.5420 0.0859 -0.2570 0.9106 0.3429 -65.3753 -85.3660 -0.4062 -0.3984
0.2448 0.09 200 0.2390 0.3339 -1.2158 0.9888 1.5497 -67.2930 -84.8700 -0.3981 -0.3938
0.0948 0.14 300 0.0937 0.5868 -2.7801 0.9888 3.3669 -70.4216 -84.3642 -0.4035 -0.4048
0.0466 0.18 400 0.0534 0.8294 -3.8553 0.9888 4.6847 -72.5720 -83.8791 -0.4093 -0.4163
0.0261 0.23 500 0.0265 0.9450 -6.0844 0.9888 7.0294 -77.0302 -83.6478 -0.4364 -0.4554
0.0129 0.27 600 0.0155 0.8955 -9.0192 0.9888 9.9148 -82.8998 -83.7468 -0.4445 -0.4719
0.0069 0.32 700 0.0112 0.7377 -12.1121 0.9888 12.8498 -89.0856 -84.0625 -0.4617 -0.4981
0.0044 0.37 800 0.0095 0.5497 -14.1581 0.9888 14.7077 -93.1776 -84.4385 -0.4990 -0.5433
0.004 0.41 900 0.0095 0.5781 -16.2335 0.9888 16.8116 -97.3284 -84.3816 -0.5203 -0.5699
0.0046 0.46 1000 0.0089 0.7788 -16.4021 0.9944 17.1809 -97.6655 -83.9802 -0.5542 -0.6027
0.0127 0.5 1100 0.0080 0.7755 -16.5854 0.9972 17.3608 -98.0321 -83.9869 -0.5407 -0.5882
0.0192 0.55 1200 0.0082 0.8670 -16.5839 0.9916 17.4509 -98.0292 -83.8038 -0.5752 -0.6293
0.0043 0.59 1300 0.0083 0.7239 -18.6420 0.9888 19.3659 -102.1455 -84.0900 -0.5830 -0.6429
0.0063 0.64 1400 0.0078 0.7659 -18.6685 0.9944 19.4343 -102.1983 -84.0061 -0.6007 -0.6587
0.0022 0.68 1500 0.0079 0.5026 -19.6619 0.9888 20.1645 -104.1852 -84.5328 -0.5968 -0.6541
0.005 0.73 1600 0.0069 0.7199 -19.4554 0.9888 20.1754 -103.7723 -84.0980 -0.6482 -0.7077
0.0038 0.78 1700 0.0068 0.8857 -19.6624 0.9888 20.5482 -104.1863 -83.7664 -0.6247 -0.6826
0.0073 0.82 1800 0.0069 1.0901 -19.2226 0.9888 20.3128 -103.3067 -83.3576 -0.5992 -0.6539
0.003 0.87 1900 0.0070 0.8410 -20.8141 0.9916 21.6551 -106.4896 -83.8559 -0.6232 -0.6807
0.01 0.91 2000 0.0059 1.1930 -19.2176 0.9916 20.4106 -103.2967 -83.1518 -0.6641 -0.7237
0.0061 0.96 2100 0.0059 1.6526 -18.5437 0.9944 20.1963 -101.9488 -82.2327 -0.6358 -0.6923
0.0024 1.0 2200 0.0058 1.1178 -18.9331 0.9916 20.0508 -102.7275 -83.3023 -0.6583 -0.7134
0.0027 1.05 2300 0.0058 1.1025 -19.5454 0.9916 20.6479 -103.9522 -83.3328 -0.6872 -0.7461
0.0057 1.1 2400 0.0061 0.8696 -21.2149 0.9972 22.0845 -107.2913 -83.7987 -0.7055 -0.7693
0.0076 1.14 2500 0.0055 1.0200 -20.0814 0.9916 21.1015 -105.0243 -83.4978 -0.7059 -0.7654
0.0025 1.19 2600 0.0058 1.1592 -20.6357 0.9916 21.7949 -106.1328 -83.2194 -0.6809 -0.7385
0.0046 1.23 2700 0.0057 0.8385 -20.2499 0.9916 21.0883 -105.3611 -83.8609 -0.6824 -0.7374
0.0039 1.28 2800 0.0058 0.6816 -20.7605 0.9944 21.4421 -106.3823 -84.1746 -0.7219 -0.7845
0.0024 1.32 2900 0.0059 0.7668 -22.0609 0.9916 22.8277 -108.9833 -84.0043 -0.7625 -0.8322
0.0033 1.37 3000 0.0055 1.3010 -20.9961 0.9916 22.2971 -106.8535 -82.9359 -0.7534 -0.8209
0.0035 1.42 3100 0.0054 1.3118 -20.5134 0.9916 21.8252 -105.8883 -82.9143 -0.7521 -0.8162
0.0033 1.46 3200 0.0055 1.3335 -20.8912 0.9944 22.2247 -106.6437 -82.8708 -0.7612 -0.8293
0.0021 1.51 3300 0.0058 1.1173 -22.2893 0.9916 23.4066 -109.4400 -83.3032 -0.7843 -0.8567
0.0012 1.55 3400 0.0064 0.9283 -23.7370 0.9916 24.6653 -112.3355 -83.6813 -0.7884 -0.8611
0.0004 1.6 3500 0.0068 0.9145 -24.8915 0.9916 25.8060 -114.6444 -83.7089 -0.7965 -0.8752
0.0035 1.64 3600 0.0063 0.9910 -24.2224 0.9916 25.2134 -113.3062 -83.5558 -0.8029 -0.8784
0.0031 1.69 3700 0.0069 0.6681 -25.5613 0.9888 26.2294 -115.9840 -84.2016 -0.8334 -0.9142
0.0063 1.73 3800 0.0064 0.9458 -24.5955 0.9916 25.5413 -114.0523 -83.6462 -0.8256 -0.9017
0.0041 1.78 3900 0.0067 1.2097 -24.8538 0.9916 26.0635 -114.5689 -83.1184 -0.8070 -0.8836
0.0034 1.83 4000 0.0062 1.4285 -24.3976 0.9916 25.8261 -113.6566 -82.6809 -0.8036 -0.8783
0.0043 1.87 4100 0.0064 1.2740 -24.3713 0.9916 25.6453 -113.6040 -82.9898 -0.7990 -0.8751
0.0008 1.92 4200 0.0062 0.8474 -23.9420 0.9888 24.7894 -112.7454 -83.8431 -0.7886 -0.8626
0.0045 1.96 4300 0.0061 0.7728 -24.1102 0.9888 24.8830 -113.0818 -83.9923 -0.8065 -0.8774
0.0025 2.01 4400 0.0056 0.6654 -23.7611 0.9916 24.4265 -112.3836 -84.2071 -0.8145 -0.8857
0.0032 2.05 4500 0.0057 0.3483 -24.4947 0.9944 24.8430 -113.8508 -84.8413 -0.8185 -0.8907
0.0022 2.1 4600 0.0058 0.2667 -24.9497 0.9916 25.2165 -114.7609 -85.0044 -0.8229 -0.8971
0.0011 2.15 4700 0.0060 -0.0008 -25.6118 0.9888 25.6110 -116.0850 -85.5395 -0.8374 -0.9151
0.0066 2.19 4800 0.0061 -0.0374 -26.0644 0.9916 26.0271 -116.9903 -85.6126 -0.8540 -0.9306
0.0022 2.24 4900 0.0063 0.0818 -26.4597 0.9888 26.5415 -117.7807 -85.3742 -0.8703 -0.9493
0.0028 2.28 5000 0.0077 -0.7880 -28.0697 0.9888 27.2817 -121.0009 -87.1139 -0.8802 -0.9634
0.0038 2.33 5100 0.0068 -0.2700 -27.7191 0.9888 27.4491 -120.2996 -86.0779 -0.8897 -0.9719
0.0044 2.37 5200 0.0071 -0.4228 -28.3790 0.9916 27.9562 -121.6195 -86.3835 -0.8925 -0.9753
0.0022 2.42 5300 0.0072 -0.5950 -29.1837 0.9888 28.5887 -123.2288 -86.7278 -0.9123 -0.9960
0.0022 2.46 5400 0.0073 -0.7860 -29.4389 0.9888 28.6529 -123.7393 -87.1098 -0.9223 -1.0087
0.0001 2.51 5500 0.0073 -0.9058 -29.7384 0.9888 28.8326 -124.3382 -87.3495 -0.9299 -1.0164
0.0022 2.56 5600 0.0070 -0.8180 -29.5150 0.9916 28.6970 -123.8913 -87.1738 -0.9322 -1.0181
0.0011 2.6 5700 0.0071 -0.6171 -29.4081 0.9888 28.7910 -123.6776 -86.7721 -0.9332 -1.0216
0.0054 2.65 5800 0.0071 -0.6641 -29.7689 0.9888 29.1048 -124.3992 -86.8661 -0.9405 -1.0273
0.0033 2.69 5900 0.0067 -0.8082 -29.8306 0.9916 29.0224 -124.5226 -87.1543 -0.9436 -1.0315
0.0011 2.74 6000 0.0068 -0.7323 -29.7235 0.9888 28.9912 -124.3083 -87.0024 -0.9401 -1.0278
0.0011 2.78 6100 0.0065 -0.5717 -29.4620 0.9916 28.8903 -123.7853 -86.6812 -0.9389 -1.0250
0.0023 2.83 6200 0.0066 -0.5549 -29.5194 0.9916 28.9645 -123.9002 -86.6477 -0.9369 -1.0244
0.0022 2.88 6300 0.0065 -0.4476 -29.3706 0.9916 28.9230 -123.6025 -86.4330 -0.9362 -1.0220
0.0035 2.92 6400 0.0066 -0.4967 -29.5205 0.9916 29.0238 -123.9024 -86.5313 -0.9395 -1.0256
0.0012 2.97 6500 0.0065 -0.4666 -29.4634 0.9916 28.9968 -123.7882 -86.4710 -0.9381 -1.0240

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
15
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nlile/PE-7b-full

Finetuned
(1)
this model