|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: mistralai/Mistral-7B-Instruct-v0.3 |
|
datasets: |
|
- generator |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: Mistral-7B-Instruct-v0.3-advisegpt-v0.2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Mistral-7B-Instruct-v0.3-advisegpt-v0.2 |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0780 |
|
- Bleu: {'bleu': 0.9576887647563643, 'precisions': [0.9773669728326163, 0.9618578951912286, 0.9507543139197927, 0.9415539534224628], 'brevity_penalty': 0.9998937877305732, 'length_ratio': 0.9998937933706971, 'translation_length': 696681, 'reference_length': 696755} |
|
- Rouge: {'rouge1': 0.9756788083049949, 'rouge2': 0.9583995226740446, 'rougeL': 0.9744286269286386, 'rougeLsum': 0.9754176834545093} |
|
- Exact Match: {'exact_match': 0.0} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 3 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 30 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Exact Match | Validation Loss | Rouge | |
|
|:-------------:|:------:|:----:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------:| |
|
| 0.0674 | 1.0 | 1272 | {'bleu': 0.9527886605929342, 'brevity_penalty': 1.0, 'length_ratio': 1.0000143520618172, 'precisions': [0.9750579097383083, 0.9573526809414263, 0.9448030782898647, 0.9344211337471139], 'reference_length': 696764, 'translation_length': 696774} | {'exact_match': 0.0} | 0.0879 | {'rouge1': 0.9733658563180658, 'rouge2': 0.9537375602435975, 'rougeL': 0.9714782202593812, 'rougeLsum': 0.97295717219818} | |
|
| 0.0515 | 2.0 | 2544 | {'bleu': 0.9576841610471547, 'brevity_penalty': 0.9998937891025745, 'length_ratio': 0.9998937947425527, 'precisions': [0.9774131966871923, 0.9617936398993365, 0.9507289899724213, 0.9415792951573699], 'reference_length': 696764, 'translation_length': 696690} | {'exact_match': 0.0} | 0.0783 | {'rouge1': 0.9757072387880681, 'rouge2': 0.9584139466483359, 'rougeL': 0.9743902945474832, 'rougeLsum': 0.9754213243935133} | |
|
| 0.0574 | 2.9993 | 2997 | {'bleu': 0.9566916740680499, 'brevity_penalty': 1.0, 'length_ratio': 1.00018514398892, 'precisions': [0.9768282813208511, 0.960876488636805, 0.9494536267704137, 0.9400012431679968], 'reference_length': 696755, 'translation_length': 696884} | {'exact_match': 0.0} | 0.0809 | {'rouge1': 0.9754024081831265, 'rouge2': 0.9579286248562431, 'rougeL': 0.9741313460430334, 'rougeLsum': 0.9751613463738352} | |
|
| 0.0482 | 3.9993 | 3996 | 0.0808 | {'bleu': 0.9574684676357755, 'precisions': [0.9771731036056137, 0.9615197629595535, 0.950377700460969, 0.9411784261633503], 'brevity_penalty': 1.0, 'length_ratio': 1.0002669517979779, 'translation_length': 696941, 'reference_length': 696755}| {'rouge1': 0.9757795166466966, 'rouge2': 0.9586013928880327, 'rougeL': 0.9745320041915129, 'rougeLsum': 0.9755165129747526}| {'exact_match': 0.0} | |
|
| 0.0458 | 4.9986 | 4995 | 0.0847 | {'bleu': 0.9570671016785056, 'precisions': [0.976919456982413, 0.9611588208136713, 0.9499201259530098, 0.9406510563080023], 'brevity_penalty': 1.0, 'length_ratio': 1.0003430187081541, 'translation_length': 696994, 'reference_length': 696755}| {'rouge1': 0.9755632054095464, 'rouge2': 0.9582426903380377, 'rougeL': 0.9743228923598912, 'rougeLsum': 0.9753134364311447}| {'exact_match': 0.0} | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |