metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-clinc_oos
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value:
accuracy: 0.9248387096774193
- name: F1
type: f1
value:
f1: 0.924017622321749
distilbert-base-uncased-finetuned-clinc_oos
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.6012
- Accuracy: {'accuracy': 0.9248387096774193}
- F1: {'f1': 0.924017622321749}
Model Training Details
Parameter | Value |
---|---|
Task | text-classification |
Base Model Name | distilbert-base-uncased |
Dataset Name | clinc_oos |
Dataset Config | plus |
Batch Size | 16 |
Number of Epochs | 3 |
Learning Rate | 0.00002 |
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
4.3563 | 1.0 | 954 | 2.0254 | {'accuracy': 0.8274193548387097} | {'f1': 0.8157244857086648} |
1.5387 | 2.0 | 1908 | 0.8120 | {'accuracy': 0.9129032258064517} | {'f1': 0.9118433401777696} |
0.6711 | 3.0 | 2862 | 0.6012 | {'accuracy': 0.9248387096774193} | {'f1': 0.924017622321749} |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3