nikitakapitan's picture
Update README.md
e2cdb78
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - clinc_oos
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-clinc_oos
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: clinc_oos
          type: clinc_oos
          config: plus
          split: validation
          args: plus
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.9248387096774193
          - name: F1
            type: f1
            value:
              f1: 0.924017622321749

distilbert-base-uncased-finetuned-clinc_oos

This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6012
  • Accuracy: {'accuracy': 0.9248387096774193}
  • F1: {'f1': 0.924017622321749}

Model Training Details

Parameter Value
Task text-classification
Base Model Name distilbert-base-uncased
Dataset Name clinc_oos
Dataset Config plus
Batch Size 16
Number of Epochs 3
Learning Rate 0.00002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
4.3563 1.0 954 2.0254 {'accuracy': 0.8274193548387097} {'f1': 0.8157244857086648}
1.5387 2.0 1908 0.8120 {'accuracy': 0.9129032258064517} {'f1': 0.9118433401777696}
0.6711 3.0 2862 0.6012 {'accuracy': 0.9248387096774193} {'f1': 0.924017622321749}

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3