metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 255.78 +/- 22.96
name: mean_reward
verified: false
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
TODO: Add your code
!apt install swig cmake
!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt
!sudo apt-get update
!apt install python-opengl
!apt install ffmpeg
!apt install xvfb
!pip3 install pyvirtualdisplay
#might need to restart google colab to run virtual display
#import os
#os.kill(os.getpid(), 9)
# Virtual display
from pyvirtualdisplay import Display
virtual_display = Display(visible=0, size=(1400, 900))
virtual_display.start()
import gymnasium
from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_vec_env
import gymnasium as gym
# First, we create our environment called LunarLander-v2
env = gym.make("LunarLander-v2")
# Then we reset this environment
observation, info = env.reset()
for _ in range(20):
# Take a random action
action = env.action_space.sample()
print("Action taken:", action)
# Do this action in the environment and get
# next_state, reward, terminated, truncated and info
observation, reward, terminated, truncated, info = env.step(action)
# If the game is terminated (in our case we land, crashed) or truncated (timeout)
if terminated or truncated:
# Reset the environment
print("Environment is reset")
observation, info = env.reset()
env.close()
# We create our environment with gym.make("<name_of_the_environment>")
env = gym.make("LunarLander-v2")
env.reset()
print("_____OBSERVATION SPACE_____ \n")
print("Observation Space Shape", env.observation_space.shape)
print("Sample observation", env.observation_space.sample()) # Get a random observation
print("\n _____ACTION SPACE_____ \n")
print("Action Space Shape", env.action_space.n)
print("Action Space Sample", env.action_space.sample()) # Take a random action
#Action 0: Do nothing,
#Action 1: Fire left orientation engine,
#Action 2: Fire the main engine,
#Action 3: Fire right orientation engine.
# Create the environment
env = make_vec_env('LunarLander-v2', n_envs=16)
# Create environment
env = gym.make('LunarLander-v2')
# Instantiate the agent - example
#model = PPO('MlpPolicy', env, verbose=1)
# Train the agent
#model.learn(total_timesteps=int(2e5))
#faster learning
model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 1024,
batch_size = 64,
n_epochs = 4,
gamma = 0.999,
gae_lambda = 0.98,
ent_coef = 0.01,
verbose=1)
# TODO: Train it for 1,000,000 timesteps
model.learn(total_timesteps = 1000000)
# TODO: Specify file name for model and save the model to file
model_name = "ppo-LunarLander-v2-niftymark"
model.save(model_name)
# TODO: Evaluate the agent
# Create a new environment for evaluation
eval_env = gym.make("LunarLander-v2")
# Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
# Print the results
print(f"mean_reward = {mean_reward:.2f} +/- {std_reward}")
notebook_login()
!git config --global credential.helper store
#If you don't want to use a Google Colab or a Jupyter Notebook, you need to use this command instead: huggingface-cli login
import gymnasium as gym
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.env_util import make_vec_env
from huggingface_sb3 import package_to_hub
## TODO: Define a repo_id
## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
repo_id = "niftymark/ppo-LunarLander-v2"
# TODO: Define the name of the environment
env_id = "LunarLander-v2"
# Create the evaluation env and set the render_mode="rgb_array"
eval_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])
# TODO: Define the model architecture we used
model_architecture = "PPO"
## TODO: Define the commit message
commit_message = "first commit with working Lunar Lander - mean reward 259.93"
# method save, evaluate, generate a model card and record a replay video of your agent before pushing the repo to the hub
package_to_hub(model=model, # Our trained model
model_name=model_name, # The name of our trained model
model_architecture=model_architecture, # The model architecture we used: in our case PPO
env_id=env_id, # Name of the environment
eval_env=eval_env, # Evaluation Environment
repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
commit_message=commit_message)
...