roberta-mqa-rat / README.md
nickrwu's picture
End of training
8038653 verified
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-mqa-rat
    results: []

roberta-mqa-rat

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1161
  • Accuracy: 0.5512
  • F1: 0.5492
  • Precision: 0.5522
  • Recall: 0.5478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.4516 0.3233 1200 1.4043 0.4042 0.4014 0.4111 0.4008
1.3834 0.6466 2400 1.3420 0.4434 0.4417 0.4447 0.4418
1.3342 0.9698 3600 1.3308 0.4513 0.4489 0.4540 0.4470
1.263 1.2931 4800 1.2413 0.4907 0.4897 0.4941 0.4881
1.2209 1.6164 6000 1.2098 0.5095 0.5079 0.5134 0.5059
1.1856 1.9397 7200 1.1804 0.5174 0.5159 0.5200 0.5139
1.1134 2.2629 8400 1.1527 0.5337 0.5316 0.5373 0.5294
1.0924 2.5862 9600 1.1307 0.5456 0.5440 0.5475 0.5425
1.0556 2.9095 10800 1.1161 0.5512 0.5492 0.5522 0.5478

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1