roberta-mqa-formrat / README.md
nickrwu's picture
End of training
b3d8f3d verified
|
raw
history blame
1.81 kB
metadata
license: mit
base_model: LIAMF-USP/roberta-large-finetuned-race
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-mqa-formrat
    results: []

roberta-mqa-formrat

This model is a fine-tuned version of LIAMF-USP/roberta-large-finetuned-race on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6094
  • Accuracy: 0.2075
  • F1: 0.1943
  • Precision: 0.2025
  • Recall: 0.2019

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.6083 1.0 3712 1.6094 0.1981 0.1925 0.1939 0.1944
1.6124 2.0 7424 1.6094 0.2050 0.2020 0.2033 0.2030
1.6113 3.0 11136 1.6094 0.2075 0.1943 0.2025 0.2019

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1