nickrwu's picture
End of training
cd3e120 verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: distilbert-base-finetuned-mathqa
    results: []

distilbert-base-finetuned-mathqa

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1648
  • Accuracy: 0.9576
  • F1: 0.9577
  • Precision: 0.9578
  • Recall: 0.9576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2186 1.0 2970 0.1849 0.9455 0.9456 0.9460 0.9454
0.1889 2.0 5940 0.1687 0.9539 0.9540 0.9539 0.9540
0.1528 3.0 8910 0.1648 0.9576 0.9577 0.9578 0.9576

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1