nickprock's picture
updated readme
52ddf8a
|
raw
history blame
2.87 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - tner/ontonotes5
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-finetuned-ner-ontonotes
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ontonotes5
          type: ontonotes5
          config: ontonotes5
          split: train
          args: ontonotes5
        metrics:
          - name: Precision
            type: precision
            value: 0.8535359959297889
          - name: Recall
            type: recall
            value: 0.8788553467356427
          - name: F1
            type: f1
            value: 0.8660106468785288
          - name: Accuracy
            type: accuracy
            value: 0.9749625470373822
widget:
  - text: 'I am Jack. I live in Clifornia and I work at Apple '
    example_title: Example 1
  - text: 'Wow this book is amazing and costs only 4€ '
    example_title: Example 2

distilbert-finetuned-ner-ontonotes

This model is a fine-tuned version of distilbert-base-cased on the ontonotes5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1448
  • Precision: 0.8535
  • Recall: 0.8789
  • F1: 0.8660
  • Accuracy: 0.9750

Model description

Token classification experiment, NER, on business topics.

Intended uses & limitations

The model can be used on token classification, in particular NER. It is fine tuned on business domain.

Training and evaluation data

The dataset used is ontonotes5

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0937 1.0 7491 0.0998 0.8367 0.8587 0.8475 0.9731
0.0572 2.0 14982 0.1084 0.8338 0.8759 0.8543 0.9737
0.0403 3.0 22473 0.1145 0.8521 0.8707 0.8613 0.9748
0.0265 4.0 29964 0.1222 0.8535 0.8815 0.8672 0.9752
0.0148 5.0 37455 0.1365 0.8536 0.8770 0.8651 0.9747
0.0111 6.0 44946 0.1448 0.8535 0.8789 0.8660 0.9750

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1