metadata
license: mit
tags:
- generated_from_trainer
datasets:
- tner/ontonotes5
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-finetuned-ner-ontonotes
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ontonotes5
type: ontonotes5
config: ontonotes5
split: train
args: ontonotes5
metrics:
- name: Precision
type: precision
value: 0.8535359959297889
- name: Recall
type: recall
value: 0.8788553467356427
- name: F1
type: f1
value: 0.8660106468785288
- name: Accuracy
type: accuracy
value: 0.9749625470373822
widget:
- text: 'I am Jack. I live in Clifornia and I work at Apple '
example_title: Example 1
- text: 'Wow this book is amazing and costs only 4€ '
example_title: Example 2
distilbert-finetuned-ner-ontonotes
This model is a fine-tuned version of distilbert-base-cased on the ontonotes5 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1448
- Precision: 0.8535
- Recall: 0.8789
- F1: 0.8660
- Accuracy: 0.9750
Model description
Token classification experiment, NER, on business topics.
Intended uses & limitations
The model can be used on token classification, in particular NER. It is fine tuned on business domain.
Training and evaluation data
The dataset used is ontonotes5
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0937 | 1.0 | 7491 | 0.0998 | 0.8367 | 0.8587 | 0.8475 | 0.9731 |
0.0572 | 2.0 | 14982 | 0.1084 | 0.8338 | 0.8759 | 0.8543 | 0.9737 |
0.0403 | 3.0 | 22473 | 0.1145 | 0.8521 | 0.8707 | 0.8613 | 0.9748 |
0.0265 | 4.0 | 29964 | 0.1222 | 0.8535 | 0.8815 | 0.8672 | 0.9752 |
0.0148 | 5.0 | 37455 | 0.1365 | 0.8536 | 0.8770 | 0.8651 | 0.9747 |
0.0111 | 6.0 | 44946 | 0.1448 | 0.8535 | 0.8789 | 0.8660 | 0.9750 |
Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1