AV-HuBERT-MuAViC-pt / README.md
nguyenvulebinh's picture
Update README.md
48b6e7f verified
---
library_name: transformers
tags: []
---
# Huggingface Implementation of AV-HuBERT on the MuAViC Dataset
This repository contains a Huggingface implementation of the AV-HuBERT (Audio-Visual Hidden Unit BERT) model, specifically trained and tested on the MuAViC (Multilingual Audio-Visual Corpus) dataset. AV-HuBERT is a self-supervised model designed for audio-visual speech recognition, leveraging both audio and visual modalities to achieve robust performance, especially in noisy environments.
Key features of this repository include:
- Pre-trained Models: Access pre-trained AV-HuBERT models fine-tuned on the MuAViC dataset. The pre-trained model been exported from [MuAViC](https://github.com/facebookresearch/muavic) repository.
- Inference scripts: Easily pipelines using Huggingface’s interface.
- Data preprocessing scripts: Including normalize frame rate, extract lips and audio.
### Inference code
```sh
git clone https://github.com/nguyenvulebinh/AV-HuBERT-S2S.git
cd AV-HuBERT-S2S
conda create -n avhuberts2s python=3.9
conda activate avhuberts2s
pip install -r requirements.txt
python run_example.py
```
```python
from src.model.avhubert2text import AV2TextForConditionalGeneration
from src.dataset.load_data import load_feature
from transformers import Speech2TextTokenizer
import torch
if __name__ == "__main__":
# Choose language to run example
AVAILABEL_LANGUAGES = ["ar", "de", "el", "en", "es", "fr", "it", "pt", "ru", "multilingual"]
language = "ru"
assert language in AVAILABEL_LANGUAGES, f"Language {language} is not available, please choose one of {AVAILABEL_LANGUAGES}"
# Load model and tokenizer
model_name_or_path = f"nguyenvulebinh/AV-HuBERT-MuAViC-{language}"
model = AV2TextForConditionalGeneration.from_pretrained(model_name_or_path, cache_dir='./model-bin')
tokenizer = Speech2TextTokenizer.from_pretrained(model_name_or_path, cache_dir='./model-bin')
model = model.cuda().eval()
# Load example video and audio
video_example = f"./example/video_processed/{language}_lip_movement.mp4"
audio_example = f"./example/video_processed/{language}_audio.wav"
if not os.path.exists(video_example) or not os.path.exists(audio_example):
print(f"WARNING: Example video and audio for {language} is not available english will be used instead")
video_example = f"./example/video_processed/en_lip_movement.mp4"
audio_example = f"./example/video_processed/en_audio.wav"
# Load and process example
sample = load_feature(
video_example,
audio_example
)
audio_feats = sample['audio_source'].cuda()
video_feats = sample['video_source'].cuda()
attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
# Generate text
output = model.generate(
audio_feats,
attention_mask=attention_mask,
video=video_feats,
max_length=1024,
)
print(tokenizer.batch_decode(output, skip_special_tokens=True))
```
### Data preprocessing scripts
```sh
mkdir model-bin
cd model-bin
wget https://huggingface.co./nguyenvulebinh/AV-HuBERT/resolve/main/20words_mean_face.npy .
wget https://huggingface.co./nguyenvulebinh/AV-HuBERT/resolve/main/shape_predictor_68_face_landmarks.dat .
# raw video only support 4:3 ratio now
cp raw_video.mp4 ./example/
python src/dataset/video_to_audio_lips.py
```
### Pretrained AVSR model
<table align="center">
<tr>
<th>Languages</th>
<th>Huggingface</th>
</tr>
<tr>
<th>Arabic</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-ar">Checkpoint-AR</a></th>
</tr>
<tr>
<th>German</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-de">Checkpoint-DE</a></th>
</tr>
<tr>
<th>Greek</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-el">Checkpoint-EL</a></th>
</tr>
<tr>
<th>English</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-en">Checkpoint-EN</a></th>
</tr>
<tr>
<th>Spanish</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-es">Checkpoint-ES</a></th>
</tr>
<tr>
<th>French</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-fr">Checkpoint-FR</a></th>
</tr>
<tr>
<th>Italian</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-it">Checkpoint-IT</a></th>
</tr>
<tr>
<th>Portuguese</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-pt">Checkpoint-PT</a></th>
</tr>
<tr>
<th>Russian</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-ru">Checkpoint-RU</a></th>
</tr>
<tr>
<th>Multilingual</th>
<th><a href="https://huggingface.co./nguyenvulebinh/AV-HuBERT-MuAViC-multilingual">Checkpoint-ar_de_el_es_fr_it_pt_ru</a></th>
</tr>
</table>
## Acknowledgments
**AV-HuBERT**: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
**MuAViC Repository**: We also gratefully acknowledge the creators of the MuAViC dataset and repository for providing the pre-trained models used in this project
## License
CC-BY-NC 4.0
## Citation
```bibtex
@article{anwar2023muavic,
title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
journal={arXiv preprint arXiv:2303.00628},
year={2023}
}
```