uaspeech-large-finetune-shorter-evals
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2762
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.316 | 0.0828 | 200 | 0.3907 |
0.2478 | 0.1242 | 300 | 0.3199 |
0.2129 | 0.1656 | 400 | 0.3282 |
0.1667 | 0.2070 | 500 | 0.3194 |
0.1534 | 0.2483 | 600 | 0.3327 |
0.1208 | 0.2897 | 700 | 0.2923 |
0.0987 | 0.3311 | 800 | 0.3048 |
0.103 | 0.3725 | 900 | 0.2841 |
0.0893 | 0.4139 | 1000 | 0.2759 |
0.0757 | 0.4553 | 1100 | 0.2625 |
0.068 | 0.4967 | 1200 | 0.2784 |
0.0608 | 0.5381 | 1300 | 0.2813 |
0.0404 | 0.5795 | 1400 | 0.2739 |
0.0422 | 0.6209 | 1500 | 0.2762 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for neuronbit/uaspeech-large-finetune-shorter-evals
Base model
openai/whisper-large-v3