|
--- |
|
base_model: teknium/OpenHermes-2.5-Mistral-7B |
|
inference: false |
|
model_type: mistral |
|
prompt_template: | |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
sparsified_by: mgoin |
|
tags: |
|
- deepsparse |
|
--- |
|
|
|
# OpenHermes 2.5 Mistral 7B - DeepSparse |
|
|
|
This repo contains [DeepSparse](https://github.com/neuralmagic/deepsparse) model files for [Teknium's OpenHermes 2.5 Mistral 7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B). |
|
|
|
This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). |
|
|
|
## Inference |
|
|
|
Install DeepSparse: `pip install deepsparse-nightly[llm]` |
|
|
|
```python |
|
from deepsparse import TextGeneration |
|
system_message = "" |
|
prompt = "Write a quick sort algorithm in Python" |
|
formatted_prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" |
|
model = TextGeneration(model="hf:mgoin/Nous-Hermes-llama-2-7b-pruned50-quant-ds") |
|
print(model(formatted_prompt, max_new_tokens=500).generations[0].text) |
|
``` |
|
|
|
## Prompt template: ChatML |
|
|
|
``` |
|
<|im_start|>system |
|
{system_message}<|im_end|> |
|
<|im_start|>user |
|
{prompt}<|im_end|> |
|
<|im_start|>assistant |
|
|
|
``` |
|
|
|
## Sparsification |
|
|
|
See the `recipe.yaml` in this repo and follow the instructions below. |
|
|
|
``` |
|
git clone https://github.com/neuralmagic/sparseml |
|
pip install -e "sparseml[transformers]" |
|
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py teknium/OpenHermes-2.5-Mistral-7B open_platypus --recipe recipe.yaml --save True |
|
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment |
|
cp deployment/model.onnx deployment/model-orig.onnx |
|
``` |
|
|
|
```python |
|
import os |
|
import onnx |
|
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector |
|
input_file = "deployment/model-orig.onnx" |
|
output_file = "deployment/model.onnx" |
|
model = onnx.load(input_file, load_external_data=False) |
|
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) |
|
onnx.save(model, output_file) |
|
print(f"Modified model saved to: {output_file}") |
|
``` |
|
|
|
## Slack |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[Neural Magic's Slack server](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ) |