nm-research's picture
Update README.md
8708ad8 verified
|
raw
history blame
6.7 kB
---
tags:
- int8
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-8B
quantized_by: neuralmagic
---
# Meta-Llama-3.1-8B-quantized.w8a8
## Model Overview
- **Model Architecture:** Meta-Llama-3
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** INT8
- **Weight quantization:** INT8
- **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- **Release Date:** 7/31/2024
- **Version:** 1.0
- **License(s):** Llama3.1
- **Model Developers:** Neural Magic
Quantized version of [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B).
It achieves an average score of 62.71 on the [OpenLLM](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 63.03.
### Model Optimizations
This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B) to INT8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
GPTQ used a 1% damping factor and 256 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co./datasets/neuralmagic/LLM_compression_calibration).
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Meta-Llama-3.1-8B-quantized.w8a8"
number_gpus = 1
max_model_len = 8192
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
```python
from transformers import AutoTokenizer
from datasets import Dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random
model_id = "meta-llama/Meta-Llama-3.1-8B"
num_samples = 256
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = GPTQModifier(
targets="Linear",
scheme="W8A8",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("Meta-Llama-3.1-8B-quantized.w8a16")
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3-8B-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Meta-Llama-3-8B </strong>
</td>
<td><strong>Meta-Llama-3-8B-quantized.w8a8(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>65.07
</td>
<td>64.95
</td>
<td>99.8%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>58.11
</td>
<td>58.62
</td>
<td>100.9%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>50.64
</td>
<td>49.51
</td>
<td>97.8%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>82.30
</td>
<td>81.63
</td>
<td>99.2%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>77.90
</td>
<td>78.22
</td>
<td>100.4%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>44.15
</td>
<td>43.36
</td>
<td>98.2%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>63.03</strong>
</td>
<td><strong>62.71</strong>
</td>
<td><strong>99.5%</strong>
</td>
</tr>
</table>