|
--- |
|
tags: |
|
- int8 |
|
- vllm |
|
language: |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- pt |
|
- hi |
|
- es |
|
- th |
|
pipeline_tag: text-generation |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-8B |
|
quantized_by: neuralmagic |
|
--- |
|
|
|
# Meta-Llama-3.1-8B-quantized.w8a8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Meta-Llama-3 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Activation quantization:** INT8 |
|
- **Weight quantization:** INT8 |
|
- **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). |
|
- **Release Date:** 7/31/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** Llama3.1 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B). |
|
It achieves an average score of 62.71 on the [OpenLLM](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 63.03. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B) to INT8 data type. |
|
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). |
|
Weight quantization also reduces disk size requirements by approximately 50%. |
|
|
|
Only weights and activations of the linear operators within transformers blocks are quantized. |
|
Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension. |
|
Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations. |
|
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. |
|
GPTQ used a 1% damping factor and 256 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co./datasets/neuralmagic/LLM_compression_calibration). |
|
|
|
|
|
## Deployment |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "neuralmagic/Meta-Llama-3.1-8B-quantized.w8a8" |
|
number_gpus = 1 |
|
max_model_len = 8192 |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
|
|
## Creation |
|
|
|
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from datasets import Dataset |
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
import random |
|
|
|
model_id = "meta-llama/Meta-Llama-3.1-8B" |
|
|
|
num_samples = 256 |
|
max_seq_len = 8192 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
def preprocess_fn(example): |
|
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} |
|
|
|
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") |
|
ds = ds.shuffle().select(range(num_samples)) |
|
ds = ds.map(preprocess_fn) |
|
|
|
recipe = GPTQModifier( |
|
targets="Linear", |
|
scheme="W8A8", |
|
ignore=["lm_head"], |
|
dampening_frac=0.01, |
|
) |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
) |
|
|
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
num_calibration_samples=num_samples, |
|
) |
|
model.save_pretrained("Meta-Llama-3.1-8B-quantized.w8a16") |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the [OpenLLM](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3-8B-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \ |
|
--tasks openllm \ |
|
--batch_size auto |
|
``` |
|
|
|
### Accuracy |
|
|
|
#### Open LLM Leaderboard evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Meta-Llama-3-8B </strong> |
|
</td> |
|
<td><strong>Meta-Llama-3-8B-quantized.w8a8(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>65.07 |
|
</td> |
|
<td>64.95 |
|
</td> |
|
<td>99.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot) |
|
</td> |
|
<td>58.11 |
|
</td> |
|
<td>58.62 |
|
</td> |
|
<td>100.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>50.64 |
|
</td> |
|
<td>49.51 |
|
</td> |
|
<td>97.8% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>82.30 |
|
</td> |
|
<td>81.63 |
|
</td> |
|
<td>99.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>77.90 |
|
</td> |
|
<td>78.22 |
|
</td> |
|
<td>100.4% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot, mc2) |
|
</td> |
|
<td>44.15 |
|
</td> |
|
<td>43.36 |
|
</td> |
|
<td>98.2% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>63.03</strong> |
|
</td> |
|
<td><strong>62.71</strong> |
|
</td> |
|
<td><strong>99.5%</strong> |
|
</td> |
|
</tr> |
|
</table> |
|
|