|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
language: |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- pt |
|
- hi |
|
- es |
|
- th |
|
pipeline_tag: text-generation |
|
license: llama3.1 |
|
base_model: meta-llama/Meta-Llama-3.1-405B |
|
--- |
|
|
|
# Meta-Llama-3.1-405B-FP8 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Meta-Llama-3.1 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B), this model serves as a base version. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 8/6/2024 |
|
- **Version:** 1.0 |
|
- **License(s):** [llama3.1](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Meta-Llama-3.1-405B](https://huggingface.co./meta-llama/Meta-Llama-3.1-405B). |
|
It achieves an average score of 82.00 on the [OpenLLM](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), recovering 98.7% of dense performance. |
|
<!-- whereas the unquantized model achieves 79.84. --> |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-405B](https://huggingface.co./meta-llama/Meta-Llama-3.1-405B) to FP8 data type, ready for inference with vLLM built from source. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. |
|
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization with 512 sequences of UltraChat. |
|
|
|
<!-- ## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "neuralmagic/Meta-Llama-3.1-405B-FP8" |
|
number_gpus = 2 |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) |
|
|
|
llm = LLM(model=model_id, tensor_parallel_size=number_gpus) |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. --> |
|
|
|
## Creation |
|
|
|
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below. |
|
|
|
```python |
|
import torch |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
from llmcompressor.transformers.compression.helpers import ( |
|
calculate_offload_device_map, |
|
custom_offload_device_map, |
|
) |
|
|
|
recipe = """ |
|
quant_stage: |
|
quant_modifiers: |
|
QuantizationModifier: |
|
ignore: ["lm_head"] |
|
config_groups: |
|
group_0: |
|
weights: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
input_activations: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
targets: ["Linear"] |
|
""" |
|
|
|
model_stub = "meta-llama/Meta-Llama-3.1-405B" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
device_map = calculate_offload_device_map( |
|
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=torch.float16 |
|
) |
|
|
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
model_stub, torch_dtype=torch.float16, device_map=device_map |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_stub) |
|
|
|
output_dir = f"./{model_name}-FP8" |
|
|
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
DATASET_SPLIT = "train_sft" |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 4096 |
|
|
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
def preprocess(example): |
|
return { |
|
"text": tokenizer.apply_chat_template( |
|
example["messages"], |
|
tokenize=False, |
|
) |
|
} |
|
|
|
ds = ds.map(preprocess) |
|
|
|
def tokenize(sample): |
|
return tokenizer( |
|
sample["text"], |
|
padding=False, |
|
max_length=MAX_SEQUENCE_LENGTH, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
ds = ds.map(tokenize, remove_columns=ds.column_names) |
|
|
|
oneshot( |
|
model=model, |
|
output_dir=output_dir, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
save_compressed=True, |
|
) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA. |
|
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine. |
|
This version of the lm-evaluation-harness includes versions of ARC-Challenge that matches the prompting style of [Meta-Llama-3.1-evals](https://huggingface.co./datasets/meta-llama/Meta-Llama-3.1-8B-evals). |
|
An asterisk indicates that some evaluations are still being collected. |
|
|
|
### Accuracy |
|
|
|
#### Open LLM Leaderboard evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Meta-Llama-3.1-405B </strong> |
|
</td> |
|
<td><strong>Meta-Llama-3.1-405B-FP8(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>* |
|
</td> |
|
<td>84.72 |
|
</td> |
|
<td>* |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (0-shot) |
|
</td> |
|
<td>95.99 |
|
</td> |
|
<td>95.82 |
|
</td> |
|
<td>99.82% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>88.10 |
|
</td> |
|
<td>87.94 |
|
</td> |
|
<td>99.82% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot) |
|
</td> |
|
<td>90.02 |
|
</td> |
|
<td>89.14 |
|
</td> |
|
<td>99.02% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot) |
|
</td> |
|
<td>87.61 |
|
</td> |
|
<td>86.42 |
|
</td> |
|
<td>98.64% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot) |
|
</td> |
|
<td>49.83 |
|
</td> |
|
<td>47.93 |
|
</td> |
|
<td>96.19% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>*</strong> |
|
</td> |
|
<td><strong>82.00</strong> |
|
</td> |
|
<td><strong>98.70%</strong> |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
### Reproduction |
|
|
|
The results were obtained using the following commands: |
|
|
|
#### MMLU |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ |
|
--tasks mmlu \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### ARC-Challenge |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ |
|
--tasks arc_challenge_llama_3.1_instruct \ |
|
--num_fewshot 25 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### GSM-8K |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ |
|
--tasks gsm8k \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### Hellaswag |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ |
|
--tasks hellaswag \ |
|
--num_fewshot 10 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### Winogrande |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ |
|
--tasks winogrande \ |
|
--num_fewshot 5 \ |
|
--batch_size auto |
|
``` |
|
|
|
#### TruthfulQA |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ |
|
--tasks truthfulqa_mc \ |
|
--num_fewshot 0 \ |
|
--batch_size auto |
|
``` |