File size: 1,951 Bytes
aa8ee06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: other
base_model: apple/mobilevit-xx-small
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mobilevit-xx-small-FireRisk
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mobilevit-xx-small-FireRisk

This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co./apple/mobilevit-xx-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9969
- Accuracy: 0.6119
- Precision: 0.5205
- Recall: 0.4804
- F1: 0.4757

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.1535        | 1.0   | 550  | 1.0990          | 0.5983   | 0.4529    | 0.4643 | 0.4518 |
| 1.1244        | 2.0   | 1100 | 1.0341          | 0.6075   | 0.5178    | 0.4768 | 0.4656 |
| 1.0729        | 3.0   | 1650 | 1.0131          | 0.6105   | 0.5131    | 0.4761 | 0.4686 |
| 1.0514        | 4.0   | 2200 | 1.0073          | 0.6099   | 0.5149    | 0.4799 | 0.4761 |
| 1.0221        | 5.0   | 2750 | 0.9969          | 0.6119   | 0.5205    | 0.4804 | 0.4757 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0