neuralhaven
commited on
Commit
•
aa8ee06
1
Parent(s):
a007b7d
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: apple/mobilevit-xx-small
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: mobilevit-xx-small-FireRisk
|
14 |
+
results: []
|
15 |
+
---
|
16 |
+
|
17 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
18 |
+
should probably proofread and complete it, then remove this comment. -->
|
19 |
+
|
20 |
+
# mobilevit-xx-small-FireRisk
|
21 |
+
|
22 |
+
This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
|
23 |
+
It achieves the following results on the evaluation set:
|
24 |
+
- Loss: 0.9969
|
25 |
+
- Accuracy: 0.6119
|
26 |
+
- Precision: 0.5205
|
27 |
+
- Recall: 0.4804
|
28 |
+
- F1: 0.4757
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 128
|
49 |
+
- eval_batch_size: 128
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 5
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
59 |
+
| 1.1535 | 1.0 | 550 | 1.0990 | 0.5983 | 0.4529 | 0.4643 | 0.4518 |
|
60 |
+
| 1.1244 | 2.0 | 1100 | 1.0341 | 0.6075 | 0.5178 | 0.4768 | 0.4656 |
|
61 |
+
| 1.0729 | 3.0 | 1650 | 1.0131 | 0.6105 | 0.5131 | 0.4761 | 0.4686 |
|
62 |
+
| 1.0514 | 4.0 | 2200 | 1.0073 | 0.6099 | 0.5149 | 0.4799 | 0.4761 |
|
63 |
+
| 1.0221 | 5.0 | 2750 | 0.9969 | 0.6119 | 0.5205 | 0.4804 | 0.4757 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.45.1
|
69 |
+
- Pytorch 2.4.0
|
70 |
+
- Datasets 3.0.1
|
71 |
+
- Tokenizers 0.20.0
|