neuralhaven commited on
Commit
aa8ee06
1 Parent(s): a007b7d

Model save

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: apple/mobilevit-xx-small
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: mobilevit-xx-small-FireRisk
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # mobilevit-xx-small-FireRisk
21
+
22
+ This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.9969
25
+ - Accuracy: 0.6119
26
+ - Precision: 0.5205
27
+ - Recall: 0.4804
28
+ - F1: 0.4757
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 0.0001
48
+ - train_batch_size: 128
49
+ - eval_batch_size: 128
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
59
+ | 1.1535 | 1.0 | 550 | 1.0990 | 0.5983 | 0.4529 | 0.4643 | 0.4518 |
60
+ | 1.1244 | 2.0 | 1100 | 1.0341 | 0.6075 | 0.5178 | 0.4768 | 0.4656 |
61
+ | 1.0729 | 3.0 | 1650 | 1.0131 | 0.6105 | 0.5131 | 0.4761 | 0.4686 |
62
+ | 1.0514 | 4.0 | 2200 | 1.0073 | 0.6099 | 0.5149 | 0.4799 | 0.4761 |
63
+ | 1.0221 | 5.0 | 2750 | 0.9969 | 0.6119 | 0.5205 | 0.4804 | 0.4757 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.45.1
69
+ - Pytorch 2.4.0
70
+ - Datasets 3.0.1
71
+ - Tokenizers 0.20.0