metadata
library_name: transformers
tags:
- mergekit
- merge
base_model:
- netcat420/MFANNv0.21.11
- mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
model-index:
- name: MFANN-llama3.1-Abliterated-SLERP
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 25.91
name: strict accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=netcat420/MFANN-llama3.1-Abliterated-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 22.28
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=netcat420/MFANN-llama3.1-Abliterated-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 4.53
name: exact match
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=netcat420/MFANN-llama3.1-Abliterated-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.13
name: acc_norm
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=netcat420/MFANN-llama3.1-Abliterated-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.71
name: acc_norm
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=netcat420/MFANN-llama3.1-Abliterated-SLERP
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 21.42
name: accuracy
source:
url: >-
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=netcat420/MFANN-llama3.1-Abliterated-SLERP
name: Open LLM Leaderboard
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the SLERP merge method.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
slices:
- sources:
- model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
layer_range: [0, 32]
- model: netcat420/MFANNv0.21.11
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 13.83 |
IFEval (0-Shot) | 25.91 |
BBH (3-Shot) | 22.28 |
MATH Lvl 5 (4-Shot) | 4.53 |
GPQA (0-shot) | 3.13 |
MuSR (0-shot) | 5.71 |
MMLU-PRO (5-shot) | 21.42 |