nelsenputra's picture
End of training
94530e4
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - id_nergrit_corpus
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: my_awesome_id_nergrit_corpus_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: id_nergrit_corpus
          type: id_nergrit_corpus
          config: ner
          split: test
          args: ner
        metrics:
          - name: Precision
            type: precision
            value: 0.6222415479943472
          - name: Recall
            type: recall
            value: 0.6438695163104612
          - name: F1
            type: f1
            value: 0.6328708054618829
          - name: Accuracy
            type: accuracy
            value: 0.9038083290743236

my_awesome_id_nergrit_corpus_model

This model is a fine-tuned version of distilbert-base-uncased on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3602
  • Precision: 0.6222
  • Recall: 0.6439
  • F1: 0.6329
  • Accuracy: 0.9038

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.9117 1.0 784 0.4198 0.5691 0.5948 0.5817 0.8893
0.4089 2.0 1568 0.3602 0.6222 0.6439 0.6329 0.9038

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3