See axolotl config
axolotl version: 0.6.0
base_model: Qwen/Qwen2.5-7B-Instruct
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit:
load_in_4bit:
strict: false
datasets:
- path: medalpaca/medical_meadow_medqa
type: alpaca
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./sft-qwen25
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: sft-qwen-25-7b-instruct
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
eval_steps: 10
save_steps: 40
evals_per_epoch:
saves_per_epoch:
debug:
deepspeed: deepspeed_configs/zero2.json
weight_decay:
fsdp:
fsdp_config:
special_tokens:
hub_model_id: neginashz/sft-qwen-25-7b-instruct
hub_strategy: all_checkpoints
early_stopping_patience: 3
auto_resume_from_checkpoints: true
sft-qwen-25-7b-instruct
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set:
- Loss: 0.1055
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1381 | 0.1235 | 10 | 0.1342 |
0.1495 | 0.2469 | 20 | 0.1229 |
0.1215 | 0.3704 | 30 | 0.1246 |
0.1354 | 0.4938 | 40 | 0.1175 |
0.1223 | 0.6173 | 50 | 0.1115 |
0.1068 | 0.7407 | 60 | 0.1101 |
0.1061 | 0.8642 | 70 | 0.1056 |
0.118 | 0.9877 | 80 | 0.1055 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 234
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.