got-model / README.md
nazim-ks's picture
Model save
813e93b verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
model-index:
  - name: got-model
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.09523809523809523
          - name: F1
            type: f1
            value: 0.016563146997929608

got-model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Accuracy: 0.0952
  • F1: 0.0166

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.0 1.0 42 nan 0.0952 0.0166
0.0 2.0 84 nan 0.0952 0.0166
0.0 3.0 126 nan 0.0952 0.0166
0.0 4.0 168 nan 0.0952 0.0166
0.0 5.0 210 nan 0.0952 0.0166
0.0 6.0 252 nan 0.0952 0.0166
0.0 7.0 294 nan 0.0952 0.0166
0.0 8.0 336 nan 0.0952 0.0166
0.0 9.0 378 nan 0.0952 0.0166
0.0 10.0 420 nan 0.0952 0.0166

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3