nateraw/mit-b0-finetuned-sidewalks
This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.5197
- Validation Loss: 0.6268
- Validation Mean Iou: 0.2719
- Validation Mean Accuracy: 0.3442
- Validation Overall Accuracy: 0.8180
- Validation Per Category Iou: [0. 0.62230678 0.81645513 0.18616589 0.66669478 0.30574734 nan 0.36681201 0.31128062 0. 0.76635363 0.
nan 0. 0.37874505 0. 0.
0.68193241 0. 0.48867838 0.25809644 0. nan 0. 0.25765818 0. 0. 0.81965205 0.71604385 0.9214592 0. 0.00636635 0.12957446 0. ]
- Validation Per Category Accuracy: [0. 0.89469845 0.88320521 0.45231002 0.72104833 0.3386303 nan 0.53522723 0.72026843 0. 0.93197124 0.
nan 0. 0.45525816 0. 0.
0.87276184 0. 0.60762821 0.29654901 0. nan 0. 0.32162193 0. 0. 0.90797988 0.89199119 0.96388697 0. 0.00646084 0.21171965 0. ]
- Epoch: 5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Validation Mean Iou | Validation Mean Accuracy | Validation Overall Accuracy | Validation Per Category Iou | Validation Per Category Accuracy | Epoch |
---|---|---|---|---|---|---|---|
1.3430 | 0.8858 | 0.1724 | 0.2253 | 0.7508 | [0.00000000e+00 5.02535817e-01 7.94050536e-01 1.37476079e-01 | ||
5.28949130e-01 1.76391302e-01 nan 1.19967229e-01 | |||||||
0.00000000e+00 0.00000000e+00 6.61310784e-01 0.00000000e+00 | |||||||
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 0.00000000e+00 5.06634036e-01 0.00000000e+00 | |||||||
7.22567226e-02 5.35294630e-03 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 1.53949868e-02 0.00000000e+00 0.00000000e+00 | |||||||
7.37842004e-01 5.78989440e-01 8.52258994e-01 0.00000000e+00 | |||||||
0.00000000e+00 6.16858377e-05 0.00000000e+00] | [0.00000000e+00 5.80613096e-01 9.43852033e-01 1.50019637e-01 | ||||||
5.77268577e-01 3.25241508e-01 nan 1.68319967e-01 | |||||||
0.00000000e+00 0.00000000e+00 8.60308871e-01 0.00000000e+00 | |||||||
0.00000000e+00 nan 0.00000000e+00 0.00000000e+00 | |||||||
0.00000000e+00 0.00000000e+00 9.04260401e-01 0.00000000e+00 | |||||||
7.74112939e-02 5.58025588e-03 0.00000000e+00 nan | |||||||
0.00000000e+00 1.56055377e-02 0.00000000e+00 0.00000000e+00 | |||||||
8.41648672e-01 8.58416118e-01 9.02457570e-01 0.00000000e+00 | |||||||
0.00000000e+00 6.18892982e-05 0.00000000e+00] | 0 | ||||||
0.8402 | 0.7211 | 0.2203 | 0.2900 | 0.7927 | [0. 0.60561012 0.80467888 0.10134538 0.57674712 0.21967639 |
nan 0.279315 0.28998136 0. 0.71924852 0.
nan 0. 0.10241989 0. 0.
0.60537245 0. 0.37966409 0.0624908 0. 0. 0. 0.11869763 0. 0. 0.79675107 0.70541969 0.89177953 0. 0. 0.01097213 0. ] | [0. 0.70687024 0.92710849 0.47653578 0.6809956 0.28562204 nan 0.35954555 0.53804171 0. 0.87451178 0. 0. nan 0. 0.10473185 0. 0. 0.88548482 0. 0.52011987 0.06421075 0. nan 0. 0.13802701 0. 0. 0.9278545 0.83106582 0.94693817 0. 0. 0.01170072 0. ] | 1 | | 0.7051 | 0.6513 | 0.2568 | 0.3210 | 0.8151 | [0.00000000e+00 6.31500555e-01 8.33347761e-01 2.40727740e-01 6.71879162e-01 2.32727132e-01 nan 3.15720178e-01 3.22578864e-01 0.00000000e+00 7.51066980e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 3.01090014e-01 0.00000000e+00 0.00000000e+00 6.56592309e-01 0.00000000e+00 3.82317489e-01 2.25385079e-01 0.00000000e+00 nan 0.00000000e+00 2.34975219e-01 0.00000000e+00 0.00000000e+00 7.92710603e-01 6.82508692e-01 9.02369099e-01 0.00000000e+00 5.10019193e-04 4.02361131e-02 0.00000000e+00] | [0.00000000e+00 7.76355941e-01 9.39707165e-01 3.90888278e-01 7.70256989e-01 2.84066636e-01 nan 4.57106724e-01 6.33498392e-01 0.00000000e+00 9.05789013e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 3.57230962e-01 0.00000000e+00 0.00000000e+00 8.45761217e-01 0.00000000e+00 5.16681541e-01 2.82796479e-01 0.00000000e+00 nan 0.00000000e+00 3.07634724e-01 0.00000000e+00 0.00000000e+00 9.04391068e-01 8.86212453e-01 9.64570665e-01 0.00000000e+00 5.17411580e-04 4.71742075e-02 0.00000000e+00] | 2 | | 0.6294 | 0.6365 | 0.2695 | 0.3320 | 0.8244 | [0. 0.63840754 0.83879521 0.31781353 0.69394774 0.22324776 nan 0.35012894 0.31369877 0. 0.7683448 0. 0. nan 0. 0.36532292 0. 0. 0.65554136 0. 0.37438724 0.25682621 0. nan 0. 0.23051151 0. 0. 0.81818163 0.7633018 0.91092518 0. 0.00145576 0.10215516 0. ] | [0. 0.76103704 0.95305272 0.43848725 0.78760908 0.25645014 nan 0.48971828 0.61853472 0. 0.90793733 0. 0. nan 0. 0.48772201 0. 0. 0.84205031 0. 0.53308407 0.36285878 0. nan 0. 0.27953916 0. 0. 0.93079576 0.87079757 0.96477884 0. 0.00147054 0.13899972 0. ] | 3 | | 0.5686 | 0.6122 | 0.2715 | 0.3360 | 0.8256 | [0.00000000e+00 6.38345814e-01 8.56252996e-01 3.07043269e-01 6.87537894e-01 3.06534041e-01 nan 3.84145525e-01 3.19438916e-01 0.00000000e+00 7.57233152e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 4.06585843e-01 0.00000000e+00 0.00000000e+00 6.47648546e-01 2.91885581e-04 4.00547422e-01 1.97261484e-01 0.00000000e+00 nan 0.00000000e+00 2.20793008e-01 0.00000000e+00 0.00000000e+00 8.19526784e-01 7.19306080e-01 9.20192720e-01 0.00000000e+00 2.23374930e-03 9.77508243e-02 0.00000000e+00] | [0.00000000e+00 7.89438910e-01 9.16367241e-01 4.32251205e-01 7.89740409e-01 4.88566404e-01 nan 5.36825005e-01 6.47787376e-01 0.00000000e+00 9.32641501e-01 0.00000000e+00 0.00000000e+00 nan 0.00000000e+00 4.73813253e-01 0.00000000e+00 0.00000000e+00 9.09004353e-01 2.91885581e-04 4.37175308e-01 2.25663128e-01 0.00000000e+00 nan 0.00000000e+00 2.60992057e-01 0.00000000e+00 0.00000000e+00 9.19328058e-01 9.02898346e-01 9.65529369e-01 0.00000000e+00 2.23984750e-03 1.20880721e-01 0.00000000e+00] | 4 | | 0.5197 | 0.6268 | 0.2719 | 0.3442 | 0.8180 | [0. 0.62230678 0.81645513 0.18616589 0.66669478 0.30574734 nan 0.36681201 0.31128062 0. 0.76635363 0. 0. nan 0. 0.37874505 0. 0. 0.68193241 0. 0.48867838 0.25809644 0. nan 0. 0.25765818 0. 0. 0.81965205 0.71604385 0.9214592 0. 0.00636635 0.12957446 0. ] | [0. 0.89469845 0.88320521 0.45231002 0.72104833 0.3386303 nan 0.53522723 0.72026843 0. 0.93197124 0. 0. nan 0. 0.45525816 0. 0. 0.87276184 0. 0.60762821 0.29654901 0. nan 0. 0.32162193 0. 0. 0.90797988 0.89199119 0.96388697 0. 0.00646084 0.21171965 0. ] | 5 |
Framework versions
- Transformers 4.24.0
- TensorFlow 2.9.2
- Datasets 2.6.1
- Tokenizers 0.13.2
- Downloads last month
- 3