nandavikas16's picture
Model save
7c22a1b verified
metadata
base_model: google/pegasus-cnn_dailymail
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: pegasus-cnn_dailymail-finetuned-scope-summarization
    results: []

pegasus-cnn_dailymail-finetuned-scope-summarization

This model is a fine-tuned version of google/pegasus-cnn_dailymail on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1923
  • Rouge1: 56.9116
  • Rouge2: 45.4236
  • Rougel: 49.8645
  • Rougelsum: 49.71

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
0.5864 1.0 158 0.3056 41.1501 21.8098 34.2505 34.2057
0.3517 2.0 316 0.2787 45.9535 26.9084 37.7287 37.7213
0.2835 3.0 474 0.2655 49.4653 30.6584 40.5201 40.4494
0.2683 4.0 632 0.2528 50.2066 32.8862 40.4058 40.2244
0.2557 5.0 790 0.2469 50.3451 33.536 41.7433 41.6118
0.2493 6.0 948 0.2382 51.9053 36.1533 42.0343 41.8884
0.2406 7.0 1106 0.2330 53.2105 38.1 43.434 43.2194
0.235 8.0 1264 0.2267 51.9642 38.1903 44.4502 44.3851
0.2296 9.0 1422 0.2237 53.5609 38.9875 44.7145 44.6146
0.2246 10.0 1580 0.2195 54.6691 41.5464 45.7506 45.6856
0.221 11.0 1738 0.2141 54.4114 41.2748 45.9992 45.8182
0.2145 12.0 1896 0.2097 55.3852 42.9342 48.376 48.5267
0.2115 13.0 2054 0.2060 55.9251 43.4806 48.0303 47.9584
0.2081 14.0 2212 0.2017 55.8426 43.1239 47.8006 47.8356
0.2042 15.0 2370 0.1997 55.4631 42.78 47.307 47.3142
0.2031 16.0 2528 0.1970 57.0004 44.4252 49.6236 49.5213
0.1996 17.0 2686 0.1953 55.438 43.8797 48.536 48.3506
0.1991 18.0 2844 0.1939 56.1102 44.5176 48.5553 48.4163
0.1963 19.0 3002 0.1925 56.6366 45.3753 49.4421 49.3468
0.1955 20.0 3160 0.1923 56.9116 45.4236 49.8645 49.71

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1