nandavikas16's picture
Model save
a665b82 verified
|
raw
history blame
3.37 kB
metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: bart-large-cnn-finetuned-scope-summarization-train-test-split
    results: []

bart-large-cnn-finetuned-scope-summarization-train-test-split

This model is a fine-tuned version of facebook/bart-large-cnn on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2315
  • Rouge1: 52.3537
  • Rouge2: 31.6854
  • Rougel: 36.6454
  • Rougelsum: 50.8292

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 25 0.6966 51.835 31.057 37.6234 50.2076
0.6673 2.0 50 0.6823 48.381 28.6493 37.1777 46.9784
0.5505 3.0 75 0.6825 51.1061 31.5147 38.5282 49.8741
0.5505 4.0 100 0.7131 51.0351 32.3268 39.7744 49.4893
0.4736 5.0 125 0.6975 52.9068 32.4415 39.5503 51.2993
0.4033 6.0 150 0.7925 51.3766 30.4233 37.7124 49.5155
0.3306 7.0 175 0.8079 52.2073 31.8487 38.6156 50.8166
0.3306 8.0 200 0.9168 51.6434 31.3338 37.4811 50.1527
0.256 9.0 225 0.9810 49.7984 30.3608 36.7693 48.7107
0.1823 10.0 250 0.9289 51.679 31.2458 36.4793 50.2032
0.1355 11.0 275 1.0269 52.0775 31.1824 37.5405 50.5995
0.1355 12.0 300 1.0736 51.3365 31.2121 38.37 50.0703
0.0974 13.0 325 1.0935 52.4146 32.5704 38.0578 51.424
0.0681 14.0 350 1.1100 51.5136 31.6307 38.5212 50.2267
0.0476 15.0 375 1.1507 51.9246 31.5588 36.8706 50.7219
0.0476 16.0 400 1.1667 53.7686 33.3238 38.145 52.2277
0.0336 17.0 425 1.1606 51.9682 31.4379 37.6764 50.8294
0.0232 18.0 450 1.1961 51.6253 31.6575 37.5128 50.406
0.0232 19.0 475 1.2162 51.7758 31.8239 36.3796 50.3009
0.0182 20.0 500 1.2315 52.3537 31.6854 36.6454 50.8292

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2