sentiment-analysis
This model is a fine-tuned version of mdhugol/indonesia-bert-sentiment-classification on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7071
- Accuracy: 0.7689
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 41
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
3.9403 | 1.7986 | 500 | 3.9602 | 0.1973 |
3.5081 | 3.5971 | 1000 | 3.4530 | 0.2270 |
2.974 | 5.3957 | 1500 | 2.9278 | 0.2622 |
2.4812 | 7.1942 | 2000 | 2.4365 | 0.3176 |
2.065 | 8.9928 | 2500 | 2.0129 | 0.3703 |
1.7003 | 10.7914 | 3000 | 1.6758 | 0.4703 |
1.426 | 12.5899 | 3500 | 1.4297 | 0.5378 |
1.2629 | 14.3885 | 4000 | 1.2590 | 0.5919 |
1.1323 | 16.1871 | 4500 | 1.1440 | 0.6122 |
1.042 | 17.9856 | 5000 | 1.0668 | 0.6338 |
0.9725 | 19.7842 | 5500 | 1.0117 | 0.6662 |
0.9322 | 21.5827 | 6000 | 0.9717 | 0.6824 |
0.8992 | 23.3813 | 6500 | 0.9395 | 0.6959 |
0.8896 | 25.1799 | 7000 | 0.9145 | 0.7122 |
0.8666 | 26.9784 | 7500 | 0.8927 | 0.7203 |
0.8441 | 28.7770 | 8000 | 0.8739 | 0.7270 |
0.8037 | 30.5755 | 8500 | 0.8582 | 0.7365 |
0.7941 | 32.3741 | 9000 | 0.8438 | 0.7432 |
0.7893 | 34.1727 | 9500 | 0.8309 | 0.7392 |
0.7715 | 35.9712 | 10000 | 0.8191 | 0.7392 |
0.7444 | 37.7698 | 10500 | 0.8092 | 0.7405 |
0.771 | 39.5683 | 11000 | 0.8005 | 0.7405 |
0.7395 | 41.3669 | 11500 | 0.7919 | 0.7459 |
0.7557 | 43.1655 | 12000 | 0.7840 | 0.7486 |
0.7207 | 44.9640 | 12500 | 0.7771 | 0.75 |
0.7245 | 46.7626 | 13000 | 0.7705 | 0.7527 |
0.7135 | 48.5612 | 13500 | 0.7647 | 0.7541 |
0.7336 | 50.3597 | 14000 | 0.7591 | 0.7541 |
0.6999 | 52.1583 | 14500 | 0.7541 | 0.7554 |
0.715 | 53.9568 | 15000 | 0.7493 | 0.7568 |
0.6974 | 55.7554 | 15500 | 0.7450 | 0.7581 |
0.6847 | 57.5540 | 16000 | 0.7408 | 0.7581 |
0.7009 | 59.3525 | 16500 | 0.7372 | 0.7595 |
0.6781 | 61.1511 | 17000 | 0.7338 | 0.7608 |
0.6874 | 62.9496 | 17500 | 0.7305 | 0.7622 |
0.6861 | 64.7482 | 18000 | 0.7275 | 0.7622 |
0.6848 | 66.5468 | 18500 | 0.7249 | 0.7635 |
0.6617 | 68.3453 | 19000 | 0.7228 | 0.7649 |
0.6845 | 70.1439 | 19500 | 0.7204 | 0.7662 |
0.6619 | 71.9424 | 20000 | 0.7183 | 0.7662 |
0.6681 | 73.7410 | 20500 | 0.7165 | 0.7662 |
0.6792 | 75.5396 | 21000 | 0.7148 | 0.7662 |
0.6687 | 77.3381 | 21500 | 0.7133 | 0.7676 |
0.6779 | 79.1367 | 22000 | 0.7120 | 0.7676 |
0.6679 | 80.9353 | 22500 | 0.7109 | 0.7689 |
0.6531 | 82.7338 | 23000 | 0.7101 | 0.7689 |
0.6592 | 84.5324 | 23500 | 0.7092 | 0.7689 |
0.6578 | 86.3309 | 24000 | 0.7086 | 0.7689 |
0.6552 | 88.1295 | 24500 | 0.7081 | 0.7689 |
0.6738 | 89.9281 | 25000 | 0.7077 | 0.7689 |
0.6517 | 91.7266 | 25500 | 0.7074 | 0.7689 |
0.6694 | 93.5252 | 26000 | 0.7073 | 0.7689 |
0.6543 | 95.3237 | 26500 | 0.7072 | 0.7689 |
0.6601 | 97.1223 | 27000 | 0.7071 | 0.7689 |
0.6524 | 98.9209 | 27500 | 0.7071 | 0.7689 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 40
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.