Edit model card

sentiment-analysis

This model is a fine-tuned version of mdhugol/indonesia-bert-sentiment-classification on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7071
  • Accuracy: 0.7689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-08
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 41
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.9403 1.7986 500 3.9602 0.1973
3.5081 3.5971 1000 3.4530 0.2270
2.974 5.3957 1500 2.9278 0.2622
2.4812 7.1942 2000 2.4365 0.3176
2.065 8.9928 2500 2.0129 0.3703
1.7003 10.7914 3000 1.6758 0.4703
1.426 12.5899 3500 1.4297 0.5378
1.2629 14.3885 4000 1.2590 0.5919
1.1323 16.1871 4500 1.1440 0.6122
1.042 17.9856 5000 1.0668 0.6338
0.9725 19.7842 5500 1.0117 0.6662
0.9322 21.5827 6000 0.9717 0.6824
0.8992 23.3813 6500 0.9395 0.6959
0.8896 25.1799 7000 0.9145 0.7122
0.8666 26.9784 7500 0.8927 0.7203
0.8441 28.7770 8000 0.8739 0.7270
0.8037 30.5755 8500 0.8582 0.7365
0.7941 32.3741 9000 0.8438 0.7432
0.7893 34.1727 9500 0.8309 0.7392
0.7715 35.9712 10000 0.8191 0.7392
0.7444 37.7698 10500 0.8092 0.7405
0.771 39.5683 11000 0.8005 0.7405
0.7395 41.3669 11500 0.7919 0.7459
0.7557 43.1655 12000 0.7840 0.7486
0.7207 44.9640 12500 0.7771 0.75
0.7245 46.7626 13000 0.7705 0.7527
0.7135 48.5612 13500 0.7647 0.7541
0.7336 50.3597 14000 0.7591 0.7541
0.6999 52.1583 14500 0.7541 0.7554
0.715 53.9568 15000 0.7493 0.7568
0.6974 55.7554 15500 0.7450 0.7581
0.6847 57.5540 16000 0.7408 0.7581
0.7009 59.3525 16500 0.7372 0.7595
0.6781 61.1511 17000 0.7338 0.7608
0.6874 62.9496 17500 0.7305 0.7622
0.6861 64.7482 18000 0.7275 0.7622
0.6848 66.5468 18500 0.7249 0.7635
0.6617 68.3453 19000 0.7228 0.7649
0.6845 70.1439 19500 0.7204 0.7662
0.6619 71.9424 20000 0.7183 0.7662
0.6681 73.7410 20500 0.7165 0.7662
0.6792 75.5396 21000 0.7148 0.7662
0.6687 77.3381 21500 0.7133 0.7676
0.6779 79.1367 22000 0.7120 0.7676
0.6679 80.9353 22500 0.7109 0.7689
0.6531 82.7338 23000 0.7101 0.7689
0.6592 84.5324 23500 0.7092 0.7689
0.6578 86.3309 24000 0.7086 0.7689
0.6552 88.1295 24500 0.7081 0.7689
0.6738 89.9281 25000 0.7077 0.7689
0.6517 91.7266 25500 0.7074 0.7689
0.6694 93.5252 26000 0.7073 0.7689
0.6543 95.3237 26500 0.7072 0.7689
0.6601 97.1223 27000 0.7071 0.7689
0.6524 98.9209 27500 0.7071 0.7689

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
40
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nandapraisal/sentiment-analysis

Finetuned
(5)
this model