Edit model card

indobert-sentiment-nanda

This model is a fine-tuned version of mdhugol/indonesia-bert-sentiment-classification on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4355
  • Accuracy: 0.8569

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-08
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 41
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.3321 2.2422 500 4.1707 0.1667
3.8125 4.4843 1000 3.6117 0.2037
3.1757 6.7265 1500 3.0306 0.2475
2.6361 8.9686 2000 2.4769 0.3215
2.1065 11.2108 2500 1.9885 0.3872
1.677 13.4529 3000 1.5943 0.4848
1.3258 15.6951 3500 1.3057 0.5673
1.1192 17.9372 4000 1.1166 0.6229
0.9727 20.1794 4500 0.9917 0.6633
0.8813 22.4215 5000 0.9079 0.6852
0.8143 24.6637 5500 0.8496 0.7239
0.7987 26.9058 6000 0.8057 0.7475
0.7569 29.1480 6500 0.7709 0.7626
0.7165 31.3901 7000 0.7430 0.7710
0.7174 33.6323 7500 0.7192 0.7929
0.676 35.8744 8000 0.6983 0.7997
0.6645 38.1166 8500 0.6795 0.8030
0.6448 40.3587 9000 0.6620 0.8047
0.6547 42.6009 9500 0.6464 0.8081
0.6099 44.8430 10000 0.6319 0.8148
0.6292 47.0852 10500 0.6188 0.8182
0.6004 49.3274 11000 0.6072 0.8232
0.5795 51.5695 11500 0.5967 0.8266
0.5803 53.8117 12000 0.5867 0.8316
0.5738 56.0538 12500 0.5772 0.8333
0.5677 58.2960 13000 0.5684 0.8367
0.5475 60.5381 13500 0.5606 0.8367
0.5692 62.7803 14000 0.5535 0.8367
0.5249 65.0224 14500 0.5468 0.8384
0.5288 67.2646 15000 0.5402 0.8384
0.5382 69.5067 15500 0.5337 0.8401
0.519 71.7489 16000 0.5278 0.8401
0.5219 73.9910 16500 0.5225 0.8401
0.5051 76.2332 17000 0.5175 0.8401
0.5289 78.4753 17500 0.5122 0.8418
0.4888 80.7175 18000 0.5085 0.8401
0.5165 82.9596 18500 0.5039 0.8418
0.505 85.2018 19000 0.4996 0.8418
0.482 87.4439 19500 0.4960 0.8418
0.4926 89.6861 20000 0.4923 0.8434
0.4916 91.9283 20500 0.4889 0.8418
0.4811 94.1704 21000 0.4861 0.8434
0.4963 96.4126 21500 0.4822 0.8485
0.4684 98.6547 22000 0.4789 0.8502
0.4907 100.8969 22500 0.4763 0.8502
0.4704 103.1390 23000 0.4741 0.8485
0.4807 105.3812 23500 0.4714 0.8502
0.4806 107.6233 24000 0.4691 0.8502
0.462 109.8655 24500 0.4669 0.8502
0.4747 112.1076 25000 0.4648 0.8502
0.4674 114.3498 25500 0.4628 0.8502
0.4689 116.5919 26000 0.4607 0.8502
0.4667 118.8341 26500 0.4587 0.8502
0.4566 121.0762 27000 0.4569 0.8535
0.4679 123.3184 27500 0.4551 0.8519
0.4714 125.5605 28000 0.4535 0.8519
0.4532 127.8027 28500 0.4520 0.8519
0.4621 130.0448 29000 0.4505 0.8519
0.4458 132.2870 29500 0.4491 0.8535
0.4693 134.5291 30000 0.4480 0.8535
0.443 136.7713 30500 0.4471 0.8535
0.4503 139.0135 31000 0.4460 0.8535
0.4449 141.2556 31500 0.4451 0.8535
0.4587 143.4978 32000 0.4440 0.8535
0.4445 145.7399 32500 0.4432 0.8535
0.4465 147.9821 33000 0.4423 0.8552
0.4483 150.2242 33500 0.4414 0.8552
0.4392 152.4664 34000 0.4409 0.8552
0.4514 154.7085 34500 0.4401 0.8552
0.4444 156.9507 35000 0.4394 0.8569
0.457 159.1928 35500 0.4388 0.8552
0.434 161.4350 36000 0.4383 0.8569
0.458 163.6771 36500 0.4380 0.8569
0.4369 165.9193 37000 0.4375 0.8569
0.4442 168.1614 37500 0.4371 0.8569
0.4487 170.4036 38000 0.4369 0.8569
0.4388 172.6457 38500 0.4366 0.8569
0.451 174.8879 39000 0.4364 0.8569
0.4446 177.1300 39500 0.4362 0.8569
0.4288 179.3722 40000 0.4360 0.8569
0.4577 181.6143 40500 0.4359 0.8569
0.438 183.8565 41000 0.4358 0.8569
0.4319 186.0987 41500 0.4357 0.8569
0.4457 188.3408 42000 0.4357 0.8569
0.4312 190.5830 42500 0.4356 0.8569
0.4557 192.8251 43000 0.4355 0.8569
0.4401 195.0673 43500 0.4356 0.8569
0.4468 197.3094 44000 0.4355 0.8569
0.4492 199.5516 44500 0.4355 0.8569

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nandapraisal/indobert-sentiment-nanda

Finetuned
(5)
this model