metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-machine-articles-tag-generation
results: []
t5-small-machine-articles-tag-generation
This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9833
- Rouge1: 35.3543
- Rouge2: 18.1226
- Rougel: 31.3958
- Rougelsum: 31.414
- Gen Len: 17.6596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
3.7917 | 1.0 | 47 | 3.0002 | 19.9138 | 6.9215 | 17.6969 | 17.7888 | 18.9787 |
3.0113 | 2.0 | 94 | 2.5823 | 22.9993 | 9.0341 | 20.8118 | 20.7657 | 18.7021 |
2.7086 | 3.0 | 141 | 2.3643 | 26.7716 | 12.2207 | 24.1983 | 24.2611 | 18.3298 |
2.5192 | 4.0 | 188 | 2.2361 | 28.5866 | 13.6305 | 26.1201 | 26.1367 | 17.9894 |
2.4089 | 5.0 | 235 | 2.1661 | 30.1919 | 13.8779 | 27.1523 | 27.1256 | 18.0638 |
2.3293 | 6.0 | 282 | 2.1185 | 31.1222 | 15.6736 | 27.3953 | 27.4457 | 17.8404 |
2.2635 | 7.0 | 329 | 2.0875 | 32.3166 | 16.3032 | 28.7062 | 28.732 | 17.9149 |
2.2349 | 8.0 | 376 | 2.0653 | 31.8387 | 15.616 | 28.3254 | 28.4288 | 17.7979 |
2.1945 | 9.0 | 423 | 2.0473 | 32.388 | 16.4027 | 28.5642 | 28.6096 | 17.6809 |
2.1658 | 10.0 | 470 | 2.0352 | 33.9489 | 16.999 | 29.8446 | 29.8251 | 17.5426 |
2.1414 | 11.0 | 517 | 2.0252 | 34.0804 | 17.6999 | 30.1921 | 30.2739 | 17.5106 |
2.1103 | 12.0 | 564 | 2.0155 | 34.3488 | 17.8273 | 30.2613 | 30.3358 | 17.5957 |
2.1052 | 13.0 | 611 | 2.0053 | 35.1038 | 18.3494 | 30.6999 | 30.7655 | 17.6064 |
2.0795 | 14.0 | 658 | 2.0004 | 35.366 | 18.8791 | 31.4931 | 31.5691 | 17.7872 |
2.0612 | 15.0 | 705 | 1.9951 | 36.1778 | 18.7911 | 31.5974 | 31.6309 | 17.6064 |
2.0792 | 16.0 | 752 | 1.9886 | 35.0387 | 18.2363 | 31.5279 | 31.5694 | 17.6702 |
2.0695 | 17.0 | 799 | 1.9868 | 36.1432 | 18.4902 | 31.8314 | 31.7955 | 17.617 |
2.0593 | 18.0 | 846 | 1.9844 | 35.7847 | 18.3497 | 31.745 | 31.7007 | 17.6809 |
2.0395 | 19.0 | 893 | 1.9842 | 36.0629 | 18.9649 | 32.098 | 32.0453 | 17.5745 |
2.0623 | 20.0 | 940 | 1.9833 | 35.3543 | 18.1226 | 31.3958 | 31.414 | 17.6596 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2