metadata
license: mit
pipeline_tag: text-generation
Intro
Activation Beacon is a plug-in module to transformer-based LLMs that enables effective, efficient, and flexible compression of long contexts.
Environment
pip install transformers
pip install flash-attn --no-build-isolation
Usage
import json
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "namespace-Pt/beacon-qwen-2-7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
model = model.cuda().eval()
with torch.no_grad():
# short context
messages = [{"role": "user", "content": "Tell me about yourself."}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, max_new_tokens=50)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Output: {repr(tokenizer.decode(outputs[0], skip_special_tokens=True))}")
# reset memory before new generation task
model.memory.reset()
# long context
with open("infbench.json", encoding="utf-8") as f:
example = json.load(f)
messages = [{"role": "user", "content": example["context"]}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to("cuda")
outputs = model.generate(**inputs, do_sample=False, top_p=1, temperature=1, max_new_tokens=20)[:, inputs["input_ids"].shape[1]:]
print("*"*20)
print(f"Input Length: {inputs['input_ids'].shape[1]}")
print(f"Answers: {example['answer']}")
print(f"Prediction: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
NOTE: It's okay to see warnings like This is a friendly reminder - the current text generation call will exceed the model's predefined maximum length (32768). Depending on the model, you may observe exceptions, performance degradation, or nothing at all.
Just ignore it.