|
--- |
|
multilinguality: mulyilingual |
|
language: |
|
- ny |
|
- kg |
|
- kmb |
|
- rw |
|
- ln |
|
- lua |
|
- lg |
|
- nso |
|
- rn |
|
- st |
|
- sw |
|
- ss |
|
- ts |
|
- tn |
|
- tum |
|
- umb |
|
- xh |
|
- zu |
|
license: apache-2.0 |
|
widget: |
|
- text: "gari langu lilipata ajali jana usiku" |
|
- text: "ndamcela ukuba ahambe nam" |
|
- text: "tango nafungolaki porte azalaki déjà te" |
|
--- |
|
|
|
### Scores |
|
```python |
|
{'eval_accuracy': 0.87955, |
|
'eval_f1_score': 0.8794755507923356, |
|
'eval_recall': 0.8797246969797138, |
|
'eval_precision': 0.881040811800798} |
|
``` |
|
|
|
### How to use |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
from transformers import pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('nairaxo/bantu-language-identification') |
|
model = AutoModelForSequenceClassification.from_pretrained("nairaxo/bantu-language-identification") |
|
nlp = pipeline('text-classification', model=model, tokenizer=tokenizer) |
|
|
|
dic = { |
|
'chichewa' : 0, |
|
'kikongo' : 1, |
|
'kimbundu' : 2, |
|
'kinyarwanda' : 3, |
|
'lingala' : 4, |
|
'lubakasai' : 5, |
|
'luganda' : 6, |
|
'northernsotho' : 7, |
|
'rundi' : 8, |
|
'southernsotho' : 9, |
|
'swahili' : 10, |
|
'swati' : 11, |
|
'tsonga' : 12, |
|
'tswana' : 13, |
|
'tumbuka' : 14, |
|
'umbundu' : 15, |
|
'xhosa' : 16, |
|
'zulu' : 17 |
|
} |
|
|
|
dic = {v: k for k, v in dic.items()} |
|
|
|
sentences = [ |
|
"gari langu lilipata ajali jana usiku", |
|
"ndamcela ukuba ahambe nam", |
|
"tango nafungolaki porte azalaki déjà te" |
|
] |
|
|
|
results = nlp(sentences) |
|
|
|
for i in range(len(results)): |
|
results[i]['label'] = dic[int(results[i]['label'].replace('LABEL_', ''))] |
|
|
|
print(results) |
|
|
|
|
|
``` |
|
|
|
|
|
Output: |
|
|
|
``` |
|
[{'label': 'swahili', 'score': 0.9996045231819153}, |
|
{'label': 'xhosa', 'score': 0.9882974028587341}, |
|
{'label': 'lingala', 'score': 0.9983460903167725}] |
|
|
|
``` |